02-pandas-restaurant

2. 数据分析实际案例之:pandas在餐厅评分数据中的使用

简介

为了更好的熟练掌握pandas在实际数据分析中的应用,今天我们再介绍一下怎么使用pandas做美国餐厅评分数据的分析。

餐厅评分数据简介

数据的来源是UCI ML Repository,包含了一千多条数据,有5个属性,分别是:

userID: 用户ID

placeID:餐厅ID

rating:总体评分

food_rating:食物评分

service_rating:服务评分

我们使用pandas来读取数据:

import numpy as np

path = '../data/restaurant_rating_final.csv'
df = pd.read_csv(path)
df
userIDplaceIDratingfood_ratingservice_rating

0

U1077

135085

2

2

2

1

U1077

135038

2

2

1

2

U1077

132825

2

2

2

3

U1077

135060

1

2

2

4

U1068

135104

1

1

2

...

...

...

...

...

...

1156

U1043

132630

1

1

1

1157

U1011

132715

1

1

0

1158

U1068

132733

1

1

0

1159

U1068

132594

1

1

1

1160

U1068

132660

0

0

0

1161 rows × 5 columns

分析评分数据

如果我们关注的是不同餐厅的总评分和食物评分,我们可以先看下这些餐厅评分的平均数,这里我们使用pivot_table方法:

mean_ratings = df.pivot_table(values=['rating','food_rating'], index='placeID',
                                 aggfunc='mean')
mean_ratings[:5]
food_ratingrating

placeID

132560

1.00

0.50

132561

1.00

0.75

132564

1.25

1.25

132572

1.00

1.00

132583

1.00

1.00

然后再看一下各个placeID,投票人数的统计:

ratings_by_place = df.groupby('placeID').size()
ratings_by_place[:10]
placeID
132560     4
132561     4
132564     4
132572    15
132583     4
132584     6
132594     5
132608     6
132609     5
132613     6
dtype: int64

如果投票人数太少,那么这些数据其实是不客观的,我们来挑选一下投票人数超过4个的餐厅:

active_place = ratings_by_place.index[ratings_by_place >= 4]
active_place
Int64Index([132560, 132561, 132564, 132572, 132583, 132584, 132594, 132608,
            132609, 132613,
            ...
            135080, 135081, 135082, 135085, 135086, 135088, 135104, 135106,
            135108, 135109],
           dtype='int64', name='placeID', length=124)

选择这些餐厅的平均评分数据:

mean_ratings = mean_ratings.loc[active_place]
mean_ratings
food_ratingrating

placeID

132560

1.000000

0.500000

132561

1.000000

0.750000

132564

1.250000

1.250000

132572

1.000000

1.000000

132583

1.000000

1.000000

...

...

...

135088

1.166667

1.000000

135104

1.428571

0.857143

135106

1.200000

1.200000

135108

1.181818

1.181818

135109

1.250000

1.000000

124 rows × 2 columns

对rating进行排序,选择评分最高的10个:

top_ratings = mean_ratings.sort_values(by='rating', ascending=False)
top_ratings[:10]
food_ratingrating

placeID

132955

1.800000

2.000000

135034

2.000000

2.000000

134986

2.000000

2.000000

132922

1.500000

1.833333

132755

2.000000

1.800000

135074

1.750000

1.750000

135013

2.000000

1.750000

134976

1.750000

1.750000

135055

1.714286

1.714286

135075

1.692308

1.692308

我们还可以计算平均总评分和平均食物评分的差值,并以一栏diff进行保存:

mean_ratings['diff'] = mean_ratings['rating'] - mean_ratings['food_rating']

sorted_by_diff = mean_ratings.sort_values(by='diff')
sorted_by_diff[:10]
food_ratingratingdiff

placeID

132667

2.000000

1.250000

-0.750000

132594

1.200000

0.600000

-0.600000

132858

1.400000

0.800000

-0.600000

135104

1.428571

0.857143

-0.571429

132560

1.000000

0.500000

-0.500000

135027

1.375000

0.875000

-0.500000

132740

1.250000

0.750000

-0.500000

134992

1.500000

1.000000

-0.500000

132706

1.250000

0.750000

-0.500000

132870

1.000000

0.600000

-0.400000

将数据进行反转,选择差距最大的前10:

sorted_by_diff[::-1][:10]
food_ratingratingdiff

placeID

134987

0.500000

1.000000

0.500000

132937

1.000000

1.500000

0.500000

135066

1.000000

1.500000

0.500000

132851

1.000000

1.428571

0.428571

135049

0.600000

1.000000

0.400000

132922

1.500000

1.833333

0.333333

135030

1.333333

1.583333

0.250000

135063

1.000000

1.250000

0.250000

132626

1.000000

1.250000

0.250000

135000

1.000000

1.250000

0.250000

计算rating的标准差,并选择最大的前10个:

# Standard deviation of rating grouped by placeID
rating_std_by_place = df.groupby('placeID')['rating'].std()
# Filter down to active_titles
rating_std_by_place = rating_std_by_place.loc[active_place]
# Order Series by value in descending order
rating_std_by_place.sort_values(ascending=False)[:10]
placeID
134987    1.154701
135049    1.000000
134983    1.000000
135053    0.991031
135027    0.991031
132847    0.983192
132767    0.983192
132884    0.983192
135082    0.971825
132706    0.957427
Name: rating, dtype: float64

最后更新于