006-langchain-chatmod
6. langchain中的chat models介绍和使用
简介
之前我们介绍了LLM模式,这种模式是就是文本输入,然后文本输出。
chat models是基于LLM模式的更加高级的模式。他的输入和输出是格式化的chat messages。
一起来看看如何在langchain中使用caht models吧。
chat models的使用
首先langchain对chat models下支持的模型就少很多了。一方面是可能有些语言模型本身是不支持chat models的。另外一方面langchain也还是在一个发展中的过程,所以有些模型还需要适配。
目前看来langchain支持的chat models有:ChatAnthropic,AzureChatOpenAI,ChatVertexAI,JinaChat,ChatOpenAI和PromptLayerChatOpenAI这几种。
langchain把chat消息分成了这几种:AIMessage, HumanMessage, SystemMessage 和 ChatMessage。
HumanMessage就是用户输入的消息,AIMessage是大语言模型的消息,SystemMessage是系统的消息。ChatMessage是一种可以自定义类型的消息。
在使用的时候,只需要在chat中传入对应的消息即可:
当然和LLM一样,你也可以使用批量模式如下:
chat models的高级功能
其实和LLM类似,基本上LLM有的高级功能chat models都有。
比如有用的比如缓存功能,可以缓存之前的输入和输出,避免每次都调用LLM,从而可以减少token的开销。
以InMemoryCache为例子:
除了InMemoryCache,langchain还支持FullLLMCache,SQLAlchemyCache,SQLiteCache和RedisCache等等。
同样的,chat models也是支持流模式的:
只需要在构建ChatOpenAI的时候,把StreamingStdOutCallbackHandler传入callbacks即可。
如果要在chat models中使用PromptTemplate,因为chat models的消息格式跟LLM是不一样的,所以对应的PromptTemplate也是不一样的。
和对应的chat models消息对应的PromptTemplate是ChatPromptTemplate,SystemMessagePromptTemplate, AIMessagePromptTemplate和HumanMessagePromptTemplate。
我们看下是如何使用prompt template来构建prompt:
chat models下消息构建确实比直接使用LLM要复杂点,大家在使用的时候需要注意。
总结
chat models是LLM的高阶表现形式。如果我们需要进行对话模型的话,就可以考虑使用这个。
更多内容请参考 www.flydean.com
最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!
欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!
最后更新于
这有帮助吗?