请你判断一个 9 x 9
的数独是否有效。只需要 根据以下规则 ,验证已经填入的数字是否有效即可。
数字 1-9
在每一个以粗实线分隔的 3x3
宫内只能出现一次。(请参考示例图)
注意:
只需要根据以上规则,验证已经填入的数字是否有效即可。
解法:
可以使用哈希表记录每一行、每一列和每一个小九宫格中,每个数字出现的次数。只需要遍历数独一次,在遍历的过程中更新哈希表中的计数,并判断是否满足有效的数独的条件即可。
由于数独中的数字范围是 1 到 9,因此可以使用数组代替哈希表进行计数。
class Solution {
public boolean isValidSudoku(char[][] board) {
int[][] rows = new int[9][9];
int[][] columns = new int[9][9];
int[][][] subboxes = new int[3][3][9];
for (int i = 0; i < 9; i++) {
for (int j = 0; j < 9; j++) {
char c = board[i][j];
if (c != '.') {
int index = c - '0' - 1;
rows[i][index]++;
columns[j][index]++;
subboxes[i / 3][j / 3][index]++;
if (rows[i][index] > 1 || columns[j][index] > 1 || subboxes[i / 3][j / 3][index] > 1) {
return false;
}
}
}
}
return true;
}
}
给你一个 m
行 n
列的矩阵 matrix
,请按照 顺时针螺旋顺序 ,返回矩阵中的所有元素。
解法:
1.直接模拟遍历的过程,如果不满足条件则退出。
class Solution {
public List<Integer> spiralOrder(int[][] matrix) {
List<Integer> ans = new ArrayList<>();
if (matrix == null || matrix.length == 0 || matrix[0].length == 0) return ans;
int u = 0, d = matrix.length - 1;
int l = 0, r = matrix[0].length - 1;
while (true) {
for (int i = l; i <= r; i++) { // 左->右
ans.add(matrix[u][i]);
}
if (++u > d) break;
for (int i = u; i <= d; i++) { // 上->下
ans.add(matrix[i][r]);
}
if (--r < l) break;
for (int i = r; i >= l; i--) { // 右->左
ans.add(matrix[d][i]);
}
if (--d < u) break;
for (int i = d; i >= u; i--) { // 下->上
ans.add(matrix[i][l]);
}
if (++l > r) break;
}
return ans;
}
}
使用一个与输入矩阵大小相同的辅助矩阵 visited,其中的每个元素表示该位置是否被访问过。使用 int[][] directions = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};来表示下一个遍历的方向。然后判断该方向是否可行。不行则继续换方向。
class Solution {
public List<Integer> spiralOrder(int[][] matrix) {
List<Integer> order = new ArrayList<Integer>();
if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
return order;
}
int rows = matrix.length, columns = matrix[0].length;
boolean[][] visited = new boolean[rows][columns];
int total = rows * columns;
int row = 0, column = 0;
int[][] directions = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};
int directionIndex = 0;
for (int i = 0; i < total; i++) {
order.add(matrix[row][column]);
visited[row][column] = true;
int nextRow = row + directions[directionIndex][0], nextColumn = column + directions[directionIndex][1];
if (nextRow < 0 || nextRow >= rows || nextColumn < 0 || nextColumn >= columns || visited[nextRow][nextColumn]) {
directionIndex = (directionIndex + 1) % 4;
}
row += directions[directionIndex][0];
column += directions[directionIndex][1];
}
return order;
}
}
给定一个 n × n 的二维矩阵 matrix
表示一个图像。请你将图像顺时针旋转 90 度。
你必须在** 原地** 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。
解法:两次翻转
class Solution {
public void rotate(int[][] matrix) {
int n = matrix.length;
// 水平翻转
for (int i = 0; i < n / 2; ++i) {
for (int j = 0; j < n; ++j) {
int temp = matrix[i][j];
matrix[i][j] = matrix[n - i - 1][j];
matrix[n - i - 1][j] = temp;
}
}
// 主对角线翻转
for (int i = 0; i < n; ++i) {
for (int j = 0; j < i; ++j) {
int temp = matrix[i][j];
matrix[i][j] = matrix[j][i];
matrix[j][i] = temp;
}
}
}
}
给定一个 m x n
的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法**。**
解法一:用两个标记数组分别记录每一行和每一列是否有零出现
们首先遍历该数组一次,如果某个元素为 0,那么就将该元素所在的行和列所对应标记数组的位置置为 true。最后我们再次遍历该数组,用标记数组更新原数组即可。
class Solution {
public void setZeroes(int[][] matrix) {
int m = matrix.length, n = matrix[0].length;
boolean[] row = new boolean[m];
boolean[] col = new boolean[n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (matrix[i][j] == 0) {
row[i] = col[j] = true;
}
}
}
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (row[i] || col[j]) {
matrix[i][j] = 0;
}
}
}
}
}
解法2:我们可以用矩阵的第一行和第一列代替方法一中的两个标记数组,以达到 O(1) 的额外空间。但这样会导致原数组的第一行和第一列被修改,无法记录它们是否原本包含 0。因此我们需要额外使用两个标记变量分别记录第一行和第一列是否原本包含 0。
在实际代码中,我们首先预处理出两个标记变量,接着使用其他行与列去处理第一行与第一列,然后反过来使用第一行与第一列去更新其他行与列,最后使用两个标记变量更新第一行与第一列即可。
给定一个包含 m × n
个格子的面板,每一个格子都可以看成是一个细胞。每个细胞都具有一个初始状态: 1
即为 活细胞 (live),或 0
即为 死细胞 (dead)。每个细胞与其八个相邻位置(水平,垂直,对角线)的细胞都遵循以下四条生存定律:
如果活细胞周围八个位置的活细胞数少于两个,则该位置活细胞死亡;
如果活细胞周围八个位置有两个或三个活细胞,则该位置活细胞仍然存活;
如果活细胞周围八个位置有超过三个活细胞,则该位置活细胞死亡;
如果死细胞周围正好有三个活细胞,则该位置死细胞复活;
下一个状态是通过将上述规则同时应用于当前状态下的每个细胞所形成的,其中细胞的出生和死亡是同时发生的。给你 m x n
网格面板 board
的当前状态,返回下一个状态。
解法: 使用额外的状态
class Solution {
public void gameOfLife(int[][] board) {
int[] neighbors = {0, 1, -1};
int rows = board.length;
int cols = board[0].length;
// 遍历面板每一个格子里的细胞
for (int row = 0; row < rows; row++) {
for (int col = 0; col < cols; col++) {
// 对于每一个细胞统计其八个相邻位置里的活细胞数量
int liveNeighbors = 0;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
//如果不是自己
if (!(neighbors[i] == 0 && neighbors[j] == 0)) {
// 相邻位置的坐标
int r = (row + neighbors[i]);
int c = (col + neighbors[j]);
// 查看相邻的细胞是否是活细胞
if ((r < rows && r >= 0) && (c < cols && c >= 0) && (Math.abs(board[r][c]) == 1)) {
liveNeighbors += 1;
}
}
}
}
// 规则 1 或规则 3
if ((board[row][col] == 1) && (liveNeighbors < 2 || liveNeighbors > 3)) {
// -1 代表这个细胞过去是活的现在死了
board[row][col] = -1;
}
// 规则 4
if (board[row][col] == 0 && liveNeighbors == 3) {
// 2 代表这个细胞过去是死的现在活了
board[row][col] = 2;
}
}
}
// 遍历 board 得到一次更新后的状态
for (int row = 0; row < rows; row++) {
for (int col = 0; col < cols; col++) {
if (board[row][col] > 0) {
board[row][col] = 1;
} else {
board[row][col] = 0;
}
}
}
}
}