二分查找
给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。
请必须使用时间复杂度为 O(log n) 的算法。
解法二分插入:
class Solution {
public int searchInsert(int[] nums, int target) {
int left=0;
int right = nums.length-1;
while(left <=right){
int mid=(left+right)/2;
if(nums[mid]<target){
left=mid+1;
}else{
right=mid-1;
}
}
return left;
}
}给你一个满足下述两条属性的 m x n 整数矩阵:
每行中的整数从左到右按非严格递增顺序排列。
每行的第一个整数大于前一行的最后一个整数。
给你一个整数 target ,如果 target 在矩阵中,返回 true ;否则,返回 false 。
二分查找。把矩阵看做是一个一维数组。
解法2:两次二分。可以对矩阵的第一列的元素二分查找,找到最后一个不大于目标值的元素,然后在该元素所在行中二分查找目标值是否存在。
峰值元素是指其值严格大于左右相邻值的元素。
给你一个整数数组 nums,找到峰值元素并返回其索引。数组可能包含多个峰值,在这种情况下,返回 任何一个峰值 所在位置即可。
你可以假设 nums[-1] = nums[n] = -∞ 。
你必须实现时间复杂度为 O(log n) 的算法来解决此问题。
解法:1. 寻找最大值。
解法2.方法二的二分查找优化,如果 nums[i] <nums[i+1],那么我们抛弃 [l,i] 的范围,在剩余 [i+1,r] 的范围内继续随机选取下标;
如果 nums[i]>nums[i+1],那么我们抛弃 [i,r] 的范围,在剩余 [l,i−1] 的范围内继续随机选取下标。
特别注意,我们给溢出的情况取一个特殊的值。
整数数组 nums 按升序排列,数组中的值 互不相同 。
在传递给函数之前,nums 在预先未知的某个下标 k(0 <= k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]](下标 从 0 开始 计数)。例如, [0,1,2,4,5,6,7] 在下标 3 处经旋转后可能变为 [4,5,6,7,0,1,2] 。
给你 旋转后 的数组 nums 和一个整数 target ,如果 nums 中存在这个目标值 target ,则返回它的下标,否则返回 -1 。
你必须设计一个时间复杂度为 O(log n) 的算法解决此问题。
解法:我们将数组从中间分开成左右两部分的时候,一定有一部分的数组是有序的。拿示例来看,我们从 6 这个位置分开以后数组变成了 [4, 5, 6] 和 [7, 0, 1, 2] 两个部分,其中左边 [4, 5, 6] 这个部分的数组是有序的,其他也是如此。
这启示我们可以在常规二分查找的时候查看当前 mid 为分割位置分割出来的两个部分 [l, mid] 和 [mid + 1, r] 哪个部分是有序的,并根据有序的那个部分确定我们该如何改变二分查找的上下界,因为我们能够根据有序的那部分判断出 target 在不在这个部分:
如果 [l, mid - 1] 是有序数组,且 target 的大小满足 [nums[l],nums[mid]),则我们应该将搜索范围缩小至 [l, mid - 1],否则在 [mid + 1, r] 中寻找。 如果 [mid, r] 是有序数组,且 target 的大小满足 (nums[mid+1],nums[r]],则我们应该将搜索范围缩小至 [mid + 1, r],否则在 [l, mid - 1] 中寻找。
给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。
如果数组中不存在目标值 target,返回 [-1, -1]。
你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。
解法1.二分查找,单独判断等于的情况,额外挪动位置
解法2.常规解法,但是因为target可能不存在,所以需要判断边界情况。边界判断有两种情况1.index越界了。2.target并不存在
已知一个长度为 n 的数组,预先按照升序排列,经由 1 到 n 次 旋转 后,得到输入数组。例如,原数组 nums = [0,1,2,4,5,6,7] 在变化后可能得到:
若旋转
4次,则可以得到[4,5,6,7,0,1,2]若旋转
7次,则可以得到[0,1,2,4,5,6,7]
注意,数组 [a[0], a[1], a[2], ..., a[n-1]] 旋转一次 的结果为数组 [a[n-1], a[0], a[1], a[2], ..., a[n-2]] 。
给你一个元素值 互不相同 的数组 nums ,它原来是一个升序排列的数组,并按上述情形进行了多次旋转。请你找出并返回数组中的 最小元素 。
你必须设计一个时间复杂度为 O(log n) 的算法解决此问题。
解法:可以二分查找,但是比较的对象不是固定的target而是nums[high]。因为是非特定值的比较,所以使用left < right。
在mid=(left+right)/2的时候,可能会取不到最后的high值。
因为要找最小值,所以nums[pivot] < nums[high] 或者 nums[pivot] <= nums[high] 都是可以的。
如果 pivot = (high +low) / 2,会遗漏一个high没有移动过的情况没有判断,看看这之后的high满不满足条件。
因为是跟nums[high]进行比较,这个情况已经包含在内了。
另外一种判断方法:pivot = (high +low) / 2 包含了low,nums[pivot] < nums[high]里面判断了high。所以满足条件。
给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。
算法的时间复杂度应该为 O(log (m+n)) 。
把找中位数看作是寻找第K小的数。
解法1.使用归并的方式,合并两个有序数组,得到一个大的有序数组。大的有序数组的中间位置的元素,即为中位数。
解法2.如果 A[k/2−1]<B[k/2−1],则比 A[k/2−1] 小的数最多只有 A 的前 k/2−1个数和 B 的前 k/2−1个数,即比 A[k/2−1]小的数最多只有 k−2 个,因此 A[k/2−1] 不可能是第 k 个数,A[0] 到 A[k/2−1] 也都不可能是第 k 个数,可以全部排除。
如果 A[k/2−1]>B[k/2−1],则可以排除 B[0] 到 B[k/2−1]。
如果 A[k/2−1]=B[k/2−1],则可以归入第一种情况处理。
解法2.划分数组
最后更新于
这有帮助吗?