www.flydean.com
  • README
  • blog
    • 新版博客回归啦
    • projects
      • 一键自动化博客发布工具,用过的人都说好(简书篇)
      • 一键自动化博客发布工具,chrome和firfox详细配置
      • 一键自动化博客发布工具,用过的人都说好(segmentfault篇)
      • 一键自动化博客发布工具,用过的人都说好(oschina篇)
      • 一键自动化博客发布工具,用过的人都说好(阿里云篇)
      • 一键自动化博客发布工具,用过的人都说好(cnblogs篇)
      • 一键自动化博客发布工具,用过的人都说好(infoq篇)
      • 一键自动化博客发布工具,用过的人都说好(csdn篇)
      • 一键自动化博客发布工具,用过的人都说好(51cto篇)
      • 一键自动化博客发布工具,用过的人都说好(掘金篇)
      • 一键自动化博客发布工具,用过的人都说好(腾讯云篇)
      • 一键自动化博客发布工具,用过的人都说好(头条篇)
      • 一键自动化博客发布工具,用过的人都说好(知乎篇)
      • 一键自动化博客发布工具,用过的人都说好(公众号篇)
      • moneyPrinterPlus
        • MoneyPrinterPlus:AI自动短视频生成工具,赚钱从来没有这么容易过
        • MoneyPrinterPlus:AI自动短视频生成工具,详细使用教程
        • MoneyPrinterPlus:AI自动短视频生成工具-阿里云配置详解
        • MoneyPrinterPlus:AI自动短视频生成工具-腾讯云配置详解
        • MoneyPrinterPlus:AI自动短视频生成工具-微软云配置详解
        • 重磅!免费一键批量混剪工具它来了,一天上万短视频不是梦
        • 福利来了!MoneyPrinterPlus可以自动配置环境和自动运行了
        • 重磅来袭!MoneyPrinterPlus一键发布短视频到视频号,抖音,快手,小红书上线了
        • MoneyPrinterPlus全面支持本地Ollama大模型
        • 在MoneyPrinterPlus中使用本地chatTTS语音模型
        • fasterWhisper和MoneyPrinterPlus无缝集成
        • 再升级!MoneyPrinterPlus集成GPT_SoVITS
    • tools
      • 来了,永久免费的图床服务
      • 给picgo上传的图片加个水印
      • 手动给docusaurus添加一个搜索
  • docs
    • blockchain
      • 00-blockchain
      • 01-bitcoin
        • 01-bitcoin-overview
        • 02-bitcoin-blockchain-network
        • 03-bitcoin-consensus
        • 04-bitcoin-transactions
        • 05-bitcoin-mine-consensus
        • 06-bitcoin-in-trouble
      • 03-hyperledger
        • 01-Introduction-to-distributed-ledgers
        • 02-hyperledger-fabric-basics
        • 03-technical-advantages-fabric
        • 04-blockchain-vscode-extension
        • 05-use-vs-connect-ibc
        • 06-run-Fabric-on-ibm-Cloud
      • 04-libra
        • 01-libra-white-paper-interpretation
        • 2. Libra教程之:数据结构和存储
        • 3. Libra教程之:执行Transactions
        • 4. Libra教程之:move语言的特点和例子
        • 5. Libra教程之:Libra协议的关键概念
        • 6. Libra protocol的逻辑数据模型
        • 7. Transaction的生命周期
        • 8. 来了,你最爱的Move语言
        • 9. 运行自定义move modules
        • 10. Libra testnet使用指南
      • 02-ethereum
        • Solidity
          • 1. Solidity的Bytecode和Opcode简介
    • cryptology
      • 01-consistency-hash
      • 02-sybil-attack
      • 03-tor
      • 04-hmac
      • 05-erc20-short-address-attack
      • 06-mac-attack
      • 07-one-time-password
      • 8. DES
      • 9. AES
      • 10. 分组密码与模式
      • 11. 私钥公钥系统
      • 12-RSA算法
      • 13. 什么是中间人攻击
      • 14-混合密码系统
      • 15-单向散列函数
      • 16. 数字签名
      • 17. 一文读懂密码学中的证书
      • 18. 密钥详解
      • 19. 更加安全的密钥生成方法Diffie-Hellman
      • 20. 基于口令的密码(PBE)
      • 21. 一篇文章让你彻底弄懂SSL/TLS协议
      • 22-known-plaintext-attack
      • 23-Content-sniffing
      • 24-csrf
      • 25-SHA1-2-3
      • 26-IDEA
      • 27-memory-hard
      • 27-memory-hard_zhihu
      • 28-safer
      • 29-collision-attack
      • 30-birthday-attack
      • 30 Side Channel Attack
      • 31-feistel-cipher
      • 32-blowfish
      • 33-twofish
      • 34 Memory Bound
      • 35-MD-length-extension
      • 36 Sponge Function
      • 37 Bcrypt
      • 38-Argon2
      • 39-Pbkdf2
      • 40-scrypt
      • 41-CORS
      • 42-pki-x509
      • 43-pki-ocsp
      • 44-openssl-ocsp
      • 45-openssl-private-ca
      • 46-ASN.1
      • 47-x690-ber-cer-der
      • 48-PEM-PKCS7812
    • db
      • 01-IndexedDB-kickoff
    • java
      • java程序员从小工到专家成神之路(2024版)
      • 1-java-base
        • 前言
        • 01-string-all-in-one
        • 02-java-string-encodings
        • 03-base-shallow-copy-deep-copy
        • 04-do-you-know-class-name
        • 05-duration-period-ChronoUnit
        • 06-inner-class-inner-interface
        • 07-java-serialization
        • 8. 什么?注释里面的代码居然能够执行
        • 9. Java函数式编程和Lambda表达式
        • 10-lambda-closure
        • 11-type-inference-lambda
        • 12-marker-interface-annotation-processor
        • 13-java-jar-in-detail
        • 14-java-spi-for-extensible-app
        • 15-wordcount-in-one-line
        • 16-how-to-stop-thread
        • 17-why-use-peek
        • 18-checked-exception-in-lambda
      • 2-io-nio
        • 简介
        • 01-io-nio-overview
        • 02-io-file
        • 03-io-try-with
        • 4. 小师妹学JavaIO之:文件读取那些事
        • 5. 小师妹学JavaIO之:文件写入那些事
        • 6. 小师妹学JavaIO之:目录还是文件
        • 7. 小师妹学JavaIO之:文件系统和WatchService
        • 8. 小师妹学JavaIO之:文件File和路径Path
        • 9. 小师妹学JavaIO之:Buffer和Buff
        • 10. 小师妹学JavaIO之:File copy和File filter
        • 11. 小师妹学JavaIO之:NIO中Channel的妙用
        • 12. 小师妹学JavaIO之:MappedByteBuffer多大的文件我都装得下
        • 13. 小师妹学JavaIO之:NIO中那些奇怪的Buffer
        • 14. 小师妹学JavaIO之:用Selector来说再见
        • 15. 小师妹学JavaIO之:文件编码和字符集Unicode
      • 3-concurrent
        • 简介
        • 1. java.util.concurrent简介
        • 2. java并发中的Synchronized关键词
        • 3. java中的Volatile关键字使用
        • 4. java中wait和sleep的区别
        • 5. java中Future的使用
        • 6. java并发中ExecutorService的使用
        • 7. java中Runnable和Callable的区别
        • 8. java中ThreadLocal的使用
        • 9. java中线程的生命周期
        • 10. java中join的使用
        • 11. 怎么在java中关闭一个thread
        • 12. java中的Atomic类
        • 13. java中interrupt,interrupted和isInterrupted的区别
        • 14. java中的daemon thread
        • 15. java中ThreadPool的介绍和使用
        • 16. java 中的fork join框架
        • 17. java并发中CountDownLatch的使用
        • 18. java中CyclicBarrier的使用
        • 19. 在java中使用JMH(Java Microbenchmark Harness)做性能测试
        • 20. java中ThreadLocalRandom的使用
        • 21. java中FutureTask的使用
        • 22. java中CompletableFuture的使用
        • 23. java中使用Semaphore构建阻塞对象池
        • 24. 在java中构建高效的结果缓存
        • 25. java中CompletionService的使用
        • 26. 使用ExecutorService来停止线程服务
        • 27. 我们的线程被饿死了
        • 28. java中有界队列的饱和策略(reject policy)
        • 29. 由于不当的执行顺序导致的死锁
        • 30. 非阻塞同步机制和CAS
        • 31. 非阻塞算法(Lock-Free)的实现
        • 32. java内存模型(JMM)和happens-before
        • 33. java多线程之Phaser
        • 34. java中Locks的使用
        • 35. ABA问题的本质及其解决办法
        • 36. 并发和Read-copy update(RCU)
        • 37. 同步类的基础AbstractQueuedSynchronizer(AQS)
        • 38. java并发Exchanger的使用
      • 4-stream
        • 简介
        • 00001-java-8-streams-Introduction
        • 00002-functional-interface
        • 00003-lambda-best-practices
        • 00004-java-8-stream-ifelse
        • 00005-java-8-stream-map
        • 00006-java-rethrow
        • 00007-java-Collectors
        • 00008-java-8-stream-reduce
        • 00009-java-8-Spliterator
        • 00010-java-8-stream-foreach-break
        • 00011-java-8-predicate-chain
        • 00012-java-8-infinite-stream
        • 00013-java-8-stream-cust-pool
        • 00014-java-8-stream-peek
        • 00015-java-custom-collector
        • 00016-java-8-lambda-exception
      • 5-collections
        • 前言
        • 01-asList-arraylist
        • 02-Comparable-Comparator
        • 03-enumMap-enumSet
        • 04-Generics-in-deep
        • 05-hashMap-LinkedHashMap
        • 06-HashMap-TreeMap
        • 07-how-to-copy-list
        • 08-iterator-to-list
        • 09-java-fail-safe-fail-fast
        • 10-queue-overview
        • 11-PriorityQueue
        • 12-SynchronousQueue
        • 13-type-erase
        • 14-reference-referenceType
        • 15-skiplist-ConcurrentSkipListMap
        • 16-DelayQueue
      • 6-jvm
        • 00-java-jvm-all-in-one
        • 1. 小师妹学JVM之:JVM的架构和执行过程
        • 2. 终于我用JOL打破了你对java对象的所有想象
        • 3. 小师妹学JVM之:java的字节码byte code简介
        • 4. 小师妹学JVM之:Dirty cards和PLAB
        • 5. 小师妹学JVM之:JVM中栈的frames详解
        • 6. 如果你想写自己的Benchmark框架
        • 7. JVM详解之:java class文件的密码本
        • 8. JVM系列之:String,数组和集合类的内存占用大小
        • 9. JVM系列之:Contend注解和false-sharing
        • 10. JVM系列之:对象的锁状态和同步
        • 11. JVM系列之:String.intern和stringTable
        • 12. JVM系列之:String.intern的性能
        • 13. JVM详解之:本地变量的生命周期
        • 14. JVM详解之:HotSpot VM中的Intrinsic methods
        • 15. JVM系列之:通过一个例子分析JIT的汇编代码
        • 16. JVM详解之:类的加载链接和初始化
        • 17. 小师妹学JVM之:逃逸分析和TLAB
        • 18. JVM系列之:JIT中的Virtual Call
        • 19. JVM系列之:JIT中的Virtual Call接口
        • 20. JVM详解之:运行时常量池
        • 21. 小师妹学JVM之:JDK14中JVM的性能优化
        • 22. JVM系列之:从汇编角度分析Volatile
        • 23. JVM系列之:从汇编角度分析NullCheck
        • 24. 小师妹学JVM之:GC的垃圾回收算法
        • 25. 小师妹学JVM之:JVM中的Safepoints
        • 26. JVM系列之:再谈java中的safepoint
        • 27. troubleshoot之:用control+break解决线程死锁问题
        • 28. troubleshoot之:使用JFR解决内存泄露
        • 29. troubleshoot之:分析OutOfMemoryError异常
        • 30. troubleshoot之:使用JFR分析性能问题
        • 31. troubleshoot之:GC调优到底是什么
        • 32. JVM系列之:详解java object对象在heap中的结构
        • 33. 小师妹学JVM之:深入理解JIT和编译优化-你看不懂系列
        • 34. 小师妹学JVM之:JIT中的LogCompilation
        • 35. 小师妹学JVM之:JIT中的PrintCompilation
        • 36. 小师妹学JVM之:JIT中的PrintAssembly
        • 37. 小师妹学JVM之:JIT中的PrintAssembly续集
        • 38. 小师妹学JVM之:深入理解编译优化之循环展开和粗化锁
        • 39. 小师妹学JVM之:JIT的Profile神器JITWatch
        • 40. 小师妹学JVM之:cache line对代码性能的影响
      • 7-security
        • 00001-java-security-code-line-DOS
        • 00002-java-security-code-line-base
        • 00003-java-security-code-line-object
        • 00004-java-security-code-line-DLC
        • 00005-java-security-code-line-expresion
        • 00006-java-security-code-line-number
        • 00007-java-security-code-line-string
        • 00008-java-security-code-line-heap-pollution
        • 00009-java-security-code-line-object-copy
        • 00010-java-security-code-line-injection
        • 00011-java-security-code-line-input
        • 00012-java-security-code-line-mutability
        • 00013-java-security-code-line-method
        • 00014-java-security-code-line-exception
        • 00015-java-security-code-line-visibility-atomicity
        • 00016-java-security-code-line-lock
        • 00017-java-security-code-line-dead-lock
        • 00018-java-security-code-line-double-check-lock
        • 00019-java-security-code-line-thread
        • 00020-java-security-code-line-threadsafe
        • 00021-java-security-code-line-file-io
        • 00022-java-security-code-line-file-security
        • 00023-java-security-code-line-serialization
        • 00024-java-security-code-line-threadpool
      • 8-new-feature
        • 00-java-new-feature-all-in-one
        • 1. JDK11的重要新特性
        • 2. JDK12的五大重要新特性
        • 3. JDK13的六大重要新特性
        • 04-JDK9-java-module
        • 05-JDK9-String-Compact
        • 06-JDK9-jvm-xlog
        • 07-JDK10-var-usage
        • 08-JDK10-var-genericity-multiple-implements
        • 09-JDK10-var-anonymous-class
        • 10-JDK11-http-reactive
        • 11-JDK11-http-new
        • 12-JDK12-collectors-teeing
        • 13-JDK12-CompactNumberFormat
        • 14-JDK13-appCDS
        • 15. 一览为快,JDK14的新特性
        • 16. JDK 14的新特性:更加好用的NullPointerExceptions
        • 17-JDK14-records
        • 18-JDK14-text-block
        • 19-JDK14-switch
        • 20-JDK14-java-tools
        • 21-JDK14-jcmd
        • 22. JDK14的新特性:instanceof模式匹配
        • 23-JDK14-jfr-jmc-event-stream
        • 24-JDK15-new-features
        • 25-JDK15-release-new-features
        • 26-JDK16-new-features
        • 27-JDK17-new-features
      • 9-advanced-feature
        • 01-Java-Thread-Affinity
        • jna
          • 01-jni-overview
          • 02-jna-overview
          • 03-jna-Library-Mapping
          • 04-jna-type-mapping
          • 05-jna-type-mapping-details
          • 06-jna-memory
          • 07-jna-function
          • 08-jna-structure
          • 09-jna-callbacks
      • netty
        • 01 Netty Startup
        • 02 Netty Bytebuf
        • 03 Netty Architecture
        • 03-netty-bootstrap-ServerBootstrap
        • 04 Netty Channel
        • 04-netty-ChannelHandlerContext
        • 04-netty-ChannelPipeline
        • 04-netty-channel-group
        • 04-netty-channel-types
        • 04-netty-channel-vs-serverChannel
        • 04-netty-socketaddress
        • 05 Netty Channel Event
        • 05-netty-EventExecutor-EventExecutorGroup
        • 05-netty-eventloop-eventloopgroup
        • 05-netty-nioeventloop
        • 06 Netty Cheerup China
        • 07 Netty Stream Based Transport
        • 08 Netty Pojo Buf
        • 09 Netty Reconnect
        • 10 Netty Chat
        • 11 Netty Udp
        • 12 Netty Securechat
        • 13 Netty Customprotocol
        • 14-java-base64
        • 14-netty-ReplayingDecoder
        • 14-netty-codec-base64
        • 14-netty-codec-bytes
        • 14-netty-codec-json
        • 14-netty-codec-msg-to-bytebuf
        • 14-netty-codec-msg-to-msg
        • 14-netty-codec-object
        • 14-netty-codec-string
        • 14-netty-codec-xml
        • 14 Netty Cust Codec
        • 14-netty-frame-decoder
        • 15 Netty Buildin Frame Detection
        • 16 Netty Buildin Codec Common
        • 17-jboss-marshalling
        • 17-netty-marshalling
        • 17-netty-protobuf-UDP
        • 17 Netty Protobuf
        • 18 Netty Http Request
        • 19 Netty Http Client Request
        • 20 Netty Fileserver
        • 21 Netty Http Fileupload
        • 22 Netty Cors
        • 23 Netty Websocket Server
        • 24 Netty Websocket Server 2
        • 25 Netty Websocket Client
        • 26 Netty Secure Http 2
        • 27 Netty Http 2
        • 28 Netty Wrap Http 2
        • 29 Netty Flowcontrol
        • 30 Netty Http 2 Client
        • 31 Netty Framecodec Http 2
        • 32 Netty Http 2 Client Framecodec
        • 33 Netty Multiplex Http 2 Server
        • 34 Netty Multiple Server
        • 35 Netty Simple Proxy
        • 36 Netty Socks Support
        • 37 Netty Cust Socks Server
        • 38-netty-cust-port-unification
        • 39-netty-SelectorProvider-channelFactory
        • 40-netty-udt-support
        • 41-netty-udt-byte-message
        • 42-netty-rendezvous
        • 43-netty-reference-cound
        • 44-netty-tcp-fast-open
        • 45-netty-ByteBuf-ByteBuffer
        • 46-netty-future-executor
        • 47-netty-Thread-local-object-pool
        • 48-netty-fastThreadLocal
        • 49-netty-extensible-enum
        • 50-netty-Hashed-wheel-timer
        • 51-netty-Thread-Affinity
        • 52-netty-native-transport
        • 53-1-netty-kqueue-transport
        • 53-2-netty-epoll-transport
        • 54-netty-dns-over-tcp
        • 55-netty-dns-over-udp
        • 56-netty-dns-over-tls
        • 57-netty-dns-tcpserver
        • 58-netty-haproxy
      • 10-ORM
        • mybatis
          • 01-difference-between-#-and-$
    • reactive
      • reactive system初探
      • 02-reactive-stream
      • r2dbc
        • 01-r2dbc-introduce
        • 02-r2dbc-h2-in-depth
        • 03-r2dbc-mysql-in-depth
        • 04-spring-data-r2dbc
      • reactor
        • 01-introduction-to-reactor
        • 02-reactor-core-in-depth
        • 03-reactor-handle-errors
        • 04-reactor-thread-schedulers
    • scala
      • 00001 Scala Oo
      • 00002 Scala Base
      • 00003 Scala Functional
      • 00004 Scala Statically Typed
      • 5. 可扩展的scala
      • 00006 Scala Parameter
      • 00007 Scala Option Some Null
      • 00008 Scala Enumerations
      • 00009 Scala Partial Function
      • 00010 Scala Futures Promise
      • 00011 Scala Mutable Immutable Collection
      • 00012 Scala Either
      • 00013 Scala Covariance Contravariant
      • 00014 Scala Visibility
      • 00015 Scala Self Type
      • 00016 Scala Existential Type
      • 00017 Scala Higher Kinded
    • web-tech
      • 01-storage-api-limit
      • 02-web-storage-api
      • 03-webworker-kickoff
    • AI
      • 02-math
        • 01-singular-value
        • 02-probability-god-mod
        • 03-Turing-machine
        • 04-p-np-npc-problem
      • 03-machine-learning
        • 01-machine-learning-overview
      • 01-llma
        • langchain
          • 001-langchain-overview
          • 002-langchain-Prompts
          • 003-langchain-custprompts
          • 004-langchain-cust-example-selector
          • 005-langchain-llm
          • 006-langchain-chatmod
          • 007-langchain-output-parthcer
          • 008-langchain-retrieval-overview
          • 009-langchain-retrieval-document-loaders
    • AIGC
      • stable-diffusion
        • Stable diffusion 初学者指南
        • 构建一个优秀的Prompt
        • 轻松复现一张AI图片
        • Stable Diffusion中的常用术语解析
        • Stable diffusion中这些重要的参数你一定要会用
        • Stable Diffusion中的embedding
        • Stable diffusion中的models
        • Stable Diffusion WebUI详细使用指南
        • Stable diffusion采样器详解
        • 原来Stable Diffusion是这样工作的
        • hypernetwork在SD中是怎么工作的
        • SD中的VAE,你不能不懂
        • 手把手教你生成一幅好看的AI图片
        • 什么?这动物图片可以上国家地理?
        • After Detailer让图像自动修复
        • AI图像放大工具,图片放大无所不能
        • LoRA大模型微调的利器
    • Architecture
      • REST
        • 01 REST RES Tful
        • 02 REST Resource
        • 03 REST HATEOAS
      • auth
        • 01-SAML-startup
        • 02-openid-connect-startup
        • 03-OAuth-2.0-in-depth
        • 04-SAML-vs-OAuth2
        • 05-openid-connnect-with-onelogin
        • 06-keycloak-startup
        • 07-keycloak-saml-wildfly
        • 08-keycloak-with-other-system
        • 09-openid-Implicit-onelogin
      • common
        • 01-reactive-system
        • 02-reactive-stream
        • 03-authorization-service
        • 04-keycloak-cluster-in-depth
        • 05-concurrency-parallelism
        • 06-software-architecture
        • 07-data-flow-architecture
        • 09 Microservices Guide
        • 10 Microservices Monolith
        • 11 Serverless Architecture
      • distribution
        • 01 Basic Paxos
        • 02 Generalized Byzantine Paxos
        • 03 Cheap Paxos Fast Paxos
        • 04 Multi Paxos
        • 05 Raft
    • algorithm
      • 01-anime
        • 01-algorithm-bubble-sort
        • 02-algorithm-insertion-sort
        • 03-algorithm-selection-sort
        • 04-algorithm-merge-sort
        • 05-algorithm-quick-sort
        • 06-algorithm-count-sort
        • 07-algorithm-radix-sort
        • 08-algorithm-linked-list
        • 09-algorithm-doubly-linked-list
        • 10-algorithm-stack
        • 11-algorithm-AVL-tree
        • 12-algorithm-queue
        • 13-algorithm-dequeue
        • 14-algorithm-hashtable
        • 15-algorithm-binary-search-tree
        • algorithm-binary-heap
        • algorithm-cyclefinding
        • algorithm-fenwicktree
        • algorithm-recursion
        • algorithm-segmenttree
        • algorithm-suffix-array
        • algorithm-suffix-tree
        • algorithm-ternary-search-tree
        • algorithm-tire
    • cheatSheet
      • cheatsheet
        • 01-jdk8-GC-cheatsheet
        • 02-JDK9-GC-cheatsheet
        • 03-JDK10-GC-cheatsheet
        • 04-JDK11-GC-cheatsheet
        • 05-JDK12-13-14-GC-cheatsheet
      • mindmap
        • Architect
        • Bigdata
        • 区块链技术大合集
        • Golang
        • Java
        • Js
        • Patten
      • tips
        • 01 Db Primary Foregin Keys
        • 01-googleCloud-azure-aws
        • 02 Db Result Set Meta Data
        • 02 New Gitbook To Pdf
        • 03-semantic-version
        • 03 Swagger To Html Pdf
        • 04 Unicode Sorting
        • 05 Git Personal Access Token
        • 06-jetbrains-fleet
        • 07-git-largefile
        • 08-beidou-how-to-work
    • flutter
      • dart
        • 01-dart-variables
        • 02-dart-buildin-type
        • 03-dart-function
        • 04-dart-operator
        • 05-dart-exception
        • 06-dart-class
        • 07-dart-extend
        • 08-dart-Generics
        • 09-dart-packages
        • 10-dart-pubspec
        • 11-dart-create-package
        • 12-dart-async
        • 13-dart-generators
        • 14-dart-number-string
        • 15-dart-collection
        • 16-dart-url
        • 17-dart-date-time
        • 18-dart-math
        • 19-dart-decode-encode
        • 20-dart-html
        • 21-dart-http
        • 22-dart-websockets
        • 23-dart-file
        • 24-dart-null-safety
        • 25-dart-Isolates
        • 26-dart-extension-method
        • 27-dart-style
        • 28-dart-Libraries-effective
        • 29-dart-null-effective
        • 30-dart-collection
      • flutter
        • 01-flutter-architectural
        • 02-flutter-widget
        • 03-flutter-state
        • 04-flutter-BuildContext
        • 05-01-flutter-gestures-demo
        • 05-flutter-gestures
        • 06-flutter-Material-materialApp
        • 07-flutter-ui-layout-overview
        • 08-flutter-ui-layout-container
        • 09-flutter-ui-layout-gridview
        • 10-01-flutter-ui-layout-listview-more
        • 10-flutter-ui-layout-listview
        • 11-flutter-ui-layout-stack
        • 12-flutter-ui-layout-card
        • 13-flutter-ui-constraints
        • 14-flutter-ui-AspectRatio-FractionallySizedBox
        • 15-flutter-ui-boxes
        • 16-flutter-ui-builder
        • 17-flutter-ui-indexed-stack
        • 18-flutter-ui-wrap
        • 19-flutter-ui-offstage
        • 20-flutter-ui-flow
        • 21-flutter-ui-Transform
        • 22-flutter-ui-SliverAppBar
        • 23-flutter-ui-SliverList-SliverGrid
        • 24-flutter-ui-navigation-1
        • 25-flutter-ui-navigation-2
        • 26-flutter-ui-custom-themes
        • 26-flutter-ui-navigation-3
        • 27-flutter-ui-play-video
        • 28-flutter-ui-use-camera
        • 29-flutter-ui-animate-router
        • 30-flutter-ui-animate-resize
        • 31-flutter-ui-animate-controller
        • 32-flutter-ui-animate-download-button
        • 33-flutter-ui-animate-menu
        • 40-flutter-ui-effect-photo-filter
        • 50-flutter-MediaQuery
    • interview
      • architecture
        • 分布式系统
        • 设计模式
      • arithmetic
        • 数组字符串
        • 双指针
        • 滑动窗口
        • 矩阵
        • Hash表格
        • 区间
        • 栈
        • 链表
        • 二叉树
        • 图
        • 字典树
        • 回溯
        • 分治
        • Kadane算法
        • 二分查找
        • 堆
        • 位运算
        • 数学
        • 020-arithmetic-dynamic-planning
        • more
          • 001-arithmetic-01
          • 002-arithmetic-02
          • 算法基础面试题(三)
      • prepare
        • 经典IQ测试题
      • db
        • mysql
          • 001-mysql-01
          • 002-mysql-02
        • redis
          • 001-redis-01
      • java
        • base
          • java基础面试问题(一)
          • 面向对象
          • java基础面试问题(三)
          • Java异常面试题
          • more
            • 001-java-exception
        • collections
          • java集合面试问题(一)
          • java集合面试问题(二)
          • java集合面试问题(三)
          • java集合高级面试问题(一)
          • more
            • 深入理解java List
            • 深入理解java Map
        • concurrent
          • java并发和多线程面试题(一)
          • java并发和多线程面试题(二)
          • java并发和多线程面试题(三)
          • java并发高级面试题(一)
          • java并发高级面试题(二)
          • java并发高级面试题(三)
          • more
            • 007-java-do-you-know-lock
        • io
          • IO面试问题(一)
          • IO面试问题(二)
          • more
            • 高效IO 与 NIO
            • 高级IO应用
        • jvm
          • 001-java-jvm-01
          • 002-java-jvm-02
          • more
            • class字节码和类加载机制
            • 内存泄露
    • javascript
      • ecmascript
        • ecmascript-10
        • ecmascript-11
        • ecmascript-12
        • ecmascript-6
        • ecmascript-7
        • ecmascript-8
        • ecmascript-9
        • es6-Iterables-Iterator
        • es6-promise-generator
        • es8-shared-memory
        • es9-async-iteration
        • es9-regexp
        • js-built-in-objects-structures
        • js-closure
        • js-memory-management
        • js-modules
        • js-use-strict
        • object-oriented-js
      • koa
        • koa-startup
      • nodejs
        • 00001-nodejs-kickoff
        • 00002-nodejs-npm
        • 00003-nodejs-async
        • 00004-nodejs-http-express
        • 00005-nodejs-file-system
        • 00006-nodejs-profile
        • 00007-nodejs-docker-best-practices
        • 00008-nodejs-event
        • 00009-nodejs-event-more
        • 00010-nodejs-block-eventloop
        • 00011-nodejs-http-in-depth
        • 00012-nodejs-worker-thread
        • 00013-nodejs-childprocess
        • 00014-nodejs-cluster
        • 00015-nodejs-debug
    • python
      • 01-python-base
        • 01-python3-cheatsheet
        • 02-python-ipython
        • 03-python-number-list-string
        • 04-python-condition-control
        • 05-python-function
        • 06-python-data-structure
        • 07-python-module
        • 08-python-io
        • 09-python-error-exception
        • 10-python-class
        • 11-python-inner-obj
        • 12-Jupyter-Notebook
        • 13-python-struct-format-char
      • 02-numpy
        • 01-python-numpy-basic
        • 02-python-numpy-datatype
        • 03-python-numpy-scalar
        • 04-python-numpy-datatype-obj
        • 05-python-Structured-arrays
        • 06-python-numpy-genfromtxt
        • 07-python-numpy-broadcasting
        • 08-python-numpy-linear-algebra
        • 09-python-numpy-ndarray
        • 10-python-numpy-func
      • 03-pandas
        • 01-python-pandas-overview
        • 02-python-pandas-advanced
        • 03-python-pandas-data-structures
        • 04-python-pandas-merge
        • 05-python-pandas-reshaping-pivot
        • 06-python-pandas-text
        • 07-python-pandas-missingdata
        • 08-python-pandas-category
        • 09-python-pandas-plot
        • 10-python-pandas-statistical
        • 11-python-pandas-groupby
        • 12-python-pandas-window
        • 13-python-pandas-sparse-data
        • 14-python-pandas-options
        • 15-python-pandas-time
      • 04-flask
        • 0001-flask-overview
      • 05-statistic-demo
        • 01-pandas-titanic
        • 02-pandas-restaurant
    • server
      • computer-science
        • 01-network-and-performance
        • 02-http1.1-vs-http2
        • 03 Http 3
        • 04 Http Cache
        • 05 Http Cookie
        • 06 Web Socket
        • 07 Websocket Message
        • 08-ssl-tls-npn-alpn
        • 09 SOCKS
        • 10 SOCKS 5 More
        • 11 UDT
        • 12-MIME
        • 13-transfer-encodings
        • 14-kqueue-epoll
        • 15-stream-socket
        • 16-datagram-socket
        • 17-unix-domain-socket
        • 18-base64-encoding
        • 19-domain-name-service
        • 20-haproxy-protocol
        • 21-sctp
        • 22-sctp-package-in-detail
        • 23-memcached-text-protocol
        • 24-memcached-binary-protocol
        • 25-redis-protocol
        • 26-mqtt-protocol
        • 27-stomp-protocol
      • linux
        • 01 That Is Kill
        • 02-du-and-df
      • server
        • nginx
          • 01-nginx-http2
          • 02-nginx-proxy-protocol
        • tomcat
          • 00001-tomcat-native-startup
        • wildfly
          • 00001-wildfly-startup
          • 00002-wildfly-config-resource
          • 00003-wildfly-domain
          • 00004-wildfly-app-deployment
          • 00005-wildfly-cluster-domain
    • spring
      • 01-springbase
        • 1. Spring MVC 中的http Caching
        • 2. @SessionAttributes 和 @SessionAttribute的区别
        • 5. Spring中的IOC容器
        • 6. 在Spring中创建Bean
        • 7. 依赖注入
        • 8. Bean作用域简介
        • 9. Spring Bean 的生命周期回调
        • 10. IOC扩展
        • 11. spring中的注解
        • 12. 组件扫描
        • 13. jsr330 annotation
        • 14. Spring的Environment接口
        • 15. 事件机制
        • 16. 资源resources
        • 17. Spring中的BeanWrapper
        • 18. SpEL
        • 19. AOP
        • 20. AspectJ注解
        • 21. 基于Schema的AOP
        • 22. AOP代理
        • 23. Spring中的@Configurable
        • 24. 深入探讨Spring多级缓存:原理与性能优化
      • 02-springBoot
        • 1. Spring Boot中的测试
        • 2. Spring Boot的TestRestTemplate使用
        • 3. Spring Boot中使用Swagger CodeGen生成REST client
        • 4. 将Spring Boot应用程序注册成为系统服务
        • 5. Spring Boot中的Properties
        • 6. Spring Boot中Spring data注解的使用
        • 7. Spring Boot中使用@JsonComponent
        • 8. Shutdown SpringBoot App
        • 9. Spring Boot 之Spring data JPA简介
        • 10. Spring Boot JPA 中transaction的使用
        • 11. Spring Boot JPA中关联表的使用
        • 12. Spring Boot JPA的查询语句
        • 13. Spring Boot JPA中使用@Entity和@Table
        • 14. Spring Boot JPA中java 8 的应用
        • 15. 在Spring Boot中加载初始化数据
        • 16. 在Spring Boot中自定义filter
        • 17. 在Spring Boot中使用内存数据库
        • 18. Spring Boot国际化支持
        • 19. 在Spring Boot使用H2内存数据库
        • 20. Spring Boot 自定义banner
        • 21. 使用spring boot创建fat jar APP
        • 22. Spring Boot devtool的使用
        • 23. SpringBoot @ConfigurationProperties详解
        • 24. 自定义spring boot的自动配置
        • 25. Spring Boot的exit code
        • 26. Spring Boot注解
        • 27. Spring Boot Admin的使用
        • 00028-Spring-Boot-Starters
        • 29. Spring Boot Actuator
        • 30. 使用maven和fat jar/war运行应用程序的对比
        • 31. Maven Wrapper简介
        • 32. 自定义parent POM
        • 00033-Change-Default-Port-in-Spring-Boot
        • 00034-Bootstrap-a-Simple-Application
        • 35. 在Spring Boot中配置web app
        • 38. 从Spring迁移到Spring Boot
        • 39. Spring Boot @EnableAutoConfiguration和@Configuration的区别
        • 00040-springboot-docker-image
        • 00041-springboot-reactive-web
        • 00042-springboot-HATEOAS
        • 00043-springboot-HATEOAS-Fundamentals
      • 03-springBoot3
        • 0001-what-is-new-in-springboot3
        • 0002-use-native-image-in-springboot3
      • 04-springCloud
        • 1. Spring Cloud OpenFeign Demo
        • 2. Spring Cloud sleuth with zipkin over RabbitMQ demo
    • tools
      • gradle
        • 01-gradle-kick-off
        • 02-gradle-build-script
        • 03-gradle-incremental-build
        • 04-gradle-task-in-depth
        • 05-gradle-vs-maven
        • 06-gradle-build-java-projects
        • 07-Gradle-Nexus-Publish-Plugin
      • java
        • 1. 5个2020年你不能不知道的java IDE神器
        • 02-jvm-jconsole
        • 03-jvm-jmap-jhat
        • 04-jvm-jstack
        • 05-jvm-jstat
      • maven
        • 01-apache-maven-lifecycle
        • 02-apache-maven-toolchains
        • 03-apache-maven-git-repository
        • 04-maven-OSSRH
      • protocolbuf
        • 01 Protocolbuf Guide
        • 02 Protocolbuf Detail
        • 03 Protobuf Encoding
由 GitBook 提供支持
在本页
  • 1. NumPy之:NumPy简介教程
  • 简介
  • 安装NumPy
  • Array和List
  • 创建Array
  • Array操作
  • sort
  • concatenate
  • 统计信息
  • reshape
  • 增加维度
  • index和切片
  • 从现有数据中创建Array
  • 算数运算
  • 其他有用操作
  • 矩阵
  • 生成随机数
  • unique
  • 矩阵变换
  • 反转数组
  • flatten 和 ravel
  • save 和 load
  • CSV

这有帮助吗?

  1. docs
  2. python
  3. 02-numpy

01-python-numpy-basic

1. NumPy之:NumPy简介教程

简介

NumPy是一个开源的Python库,主要用在数据分析和科学计算,基本上可以把NumPy看做是Python数据计算的基础,因为很多非常优秀的数据分析和机器学习框架底层使用的都是NumPy。比如:Pandas, SciPy, Matplotlib, scikit-learn, scikit-image 等。

NumPy库主要包含多维数组和矩阵数据结构。 它为ndarray(一个n维数组对象)提供了对其进行有效操作的方法。 NumPy可以用于对数组执行各种数学运算。 并且提供了可在这些数组和矩阵上运行的庞大的高级数学函数库。

安装NumPy

有很多方式可以按照NumPy:

pip install numpy

如果你使用的是conda,那么可以:

conda install numpy

或者直接使用Anaconda. 它是一系列数据分析包的集合。

Array和List

Python中有一个数据类型叫做List,list中可以存储不同种类的对象。在应用程序中这样做没有什么问题,但是如果是在科学计算中,我们希望一个数组中的元素类型必须是一致的,所以有了NumPy中的Array。

NumPy可以快速的创建Array,并且对其中的数据进行操作。

NumPy中的Array要比Python中的List要快得多,并且占用更少的内存空间。

看下两者之间的性能差异:

In [1]: import numpy as np
   ...: my_arr = np.arange(1000000)
   ...: my_list = list(range(1000000))
   ...: %time for _ in range(10): my_arr2 = my_arr * 2
   ...: %time for _ in range(10): my_list2 = [x * 2 for x in my_list]
   ...:
CPU times: user 12.3 ms, sys: 7.88 ms, total: 20.2 ms
Wall time: 21.4 ms
CPU times: user 580 ms, sys: 172 ms, total: 752 ms
Wall time: 780 ms

上面的例子对一个包含一百万的数据进行乘2操作,可以看到,使用NumPy的效率是Python的几十倍,如果在大型数据项目中这个效率会造成非常大的性能影响。

创建Array

上面的例子中,我们已经创建了一个array,使用的是np.arange方法。

我们还可以通过List来创建Array,List可以是一维列表,也可以是多维列表:

>>> a = np.array([1, 2, 3, 4, 5, 6])

>>> a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])

和List一样,Array也可以通过index来访问:

>>> print(a[0])
[1 2 3 4]

接下来我们介绍几个常用的名词:

  • vector — 表示的是一维数组

  • matrix — 表示的是二维数组

  • tensor — 表示的是三维或者更高维度的数组

在NumPy中维度也被称之为 axes 。

下面我们来看下其他几种创建Array的方法:

最简单的就是np.array,之前的例子中我们已经提到过了。

如果要快速的创建都是0 的数组,我们可以使用zeros:

>>> np.zeros(2)
array([0., 0.])

或者都填充为1:

>>> np.ones(2)
array([1., 1.])

还可以创建空的数组:

In [2]: np.empty(2)
Out[2]: array([0.        , 2.00389455])

注意,empty方法中的内容并不一定是空的,而是随机填充数据,所以我们在使用empty创建数组之后,一定要记得覆盖其中的内容。使用empty的好处就是创建的速度比较快。

还可以在range范围内填充数组:

In [3]: np.arange(10)
Out[3]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

可以指定间隔:

In [4]: np.arange(1,10,2)
Out[4]: array([1, 3, 5, 7, 9])

使用linspace可以创建等分的数组:

In [5]: np.linspace(0, 10, num=5)
Out[5]: array([ 0. ,  2.5,  5. ,  7.5, 10. ])

默认情况下创建的数组内容类型是np.float64,我们还可以将其切换成整数:np.int64

In [6]: x = np.ones(2, dtype=np.int64)

In [7]: x
Out[7]: array([1, 1])

Array操作

sort

我们可以使用sort对数组进行排序:

In [8]: arr = np.array([2, 1, 5, 3, 7, 4, 6, 8])

In [10]: np.sort(arr)
Out[10]: array([1, 2, 3, 4, 5, 6, 7, 8])

==sort==是对Array中的元素进行排序, 除了sort之外还有其他的一些排序的方法。

还可以使用argsort,argsort是一种间接排序的方法,他返回的是排序好的原数组的index:

In [11]: x = np.array([10, 5, 6])

In [12]: np.argsort(x)
Out[12]: array([1, 2, 0])

上面我们对array进行==argsort==,排序之后应该返回,5,6,10。 5的index是1,6 的index是2,10的index是0,所以返回1,2,0。

==lexsort==和argsort一样都是间接排序法,返回的都是排序过后的index,不同是lexsort 可以进行多key的排序。

surnames =    ('Hertz',    'Galilei', 'Hertz')
first_names = ('Heinrich', 'Galileo', 'Gustav')
ind = np.lexsort((first_names, surnames))
ind
array([1, 2, 0])

上面的lexsort是先按照surnames排序,然后再按照first_names进行排序。

lexsort 的排序顺序是从后到前。也就是最后一个传入的key最先排序。

==searchsorted==用来查找要插入元素的index值,举个例子:

np.searchsorted([1,2,3,4,5], 3)
2
np.searchsorted([1,2,3,4,5], 3, side='right')
3
np.searchsorted([1,2,3,4,5], [-10, 10, 2, 3])
array([0, 5, 1, 2])

==partition==是对要排序的数据进行分割,举个例子:

a = np.array([3, 4, 2, 1])
np.partition(a, 3)
array([2, 1, 3, 4])

第一个参数是一个Array,第二个参数是要分隔的基准元素,这个基准元素的位置和排序过后的位置是一样的,其他的元素比基准元素小的放在前面,比基准元素大的放在后面。

还可以按照多个元素进行分割:

np.partition(a, (1, 3))
array([1, 2, 3, 4])

concatenate

concatenate用来连接多个数组。

>>> a = np.array([1, 2, 3, 4])
>>> b = np.array([5, 6, 7, 8])

>>> np.concatenate((a, b))
array([1, 2, 3, 4, 5, 6, 7, 8])

还可以连接多维数组:

>>> x = np.array([[1, 2], [3, 4]])
>>> y = np.array([[5, 6]])
>>> np.concatenate((x, y), axis=0)
array([[1, 2],
       [3, 4],
       [5, 6]])

统计信息

ndarray.ndim 用来统计数组的维数:

>>> array_example = np.array([[[0, 1, 2, 3],
...                            [4, 5, 6, 7]],
...
...                           [[0, 1, 2, 3],
...                            [4, 5, 6, 7]],
...
...                           [[0 ,1 ,2, 3],
...                            [4, 5, 6, 7]]])
>>> array_example.ndim
3

ndarray.size 用来统计数组中的元素个数:

>>> array_example.size
24

ndarray.shape 输出数组的形状:

>>> array_example.shape
(3, 2, 4)

说明上面的数组是一个3 * 2 * 4 的数组。

reshape

使用reshape可以重新构造一个数组。

>>> a = np.arange(6)
>>> print(a)
[0 1 2 3 4 5]

>>> b = a.reshape(3, 2)
>>> print(b)
[[0 1]
 [2 3]
 [4 5]]

上面我们将一个一维的数组转成了一个3* 2 的数组。

reshape还可以接受多个参数:

>>> numpy.reshape(a, newshape=(1, 6), order='C')
array([[0, 1, 2, 3, 4, 5]])

第一个参数是要重构的数组,第二个参数新的shape,order可以取三个值,C,F或者A。

C表示按照C的index方式进行排序,F表示按照Fortran的index方式进行排序。A表示自动选择。

在Fortran中,当移动存储在内存中的二维数组的元素时,第一个索引是变化最快的索引。 当第一个索引更改时移动到下一行时,矩阵一次存储一列。另一方面,在C中,最后一个索引变化最快。

增加维度

np.newaxis可以给现有的数组增加一个维度:

>>> a = np.array([1, 2, 3, 4, 5, 6])
>>> a.shape
(6,)

>>> a2 = a[np.newaxis, :]
>>> a2.shape
(1, 6)

>>> col_vector = a[:, np.newaxis]
>>> col_vector.shape
(6, 1)

还可以使用expand_dims来指定axis的位置:

>>> b = np.expand_dims(a, axis=1)
>>> b.shape
(6, 1)

>>> c = np.expand_dims(a, axis=0)
>>> c.shape
(1, 6)

index和切片

数组的index和切片跟Python中的list是类似的:

>>> data = np.array([1, 2, 3])

>>> data[1]
2
>>> data[0:2]
array([1, 2])
>>> data[1:]
array([2, 3])
>>> data[-2:]
array([2, 3])

除此之外,数组还支持更多更强大的index操作:

>>> a = np.array([[1 , 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])

>>> print(a[a < 5])
[1 2 3 4]

上面我们找出了a中所有元素小于5的值。

In [20]: a<5
Out[20]:
array([[ True,  True,  True,  True],
       [False, False, False, False],
       [False, False, False, False]])

可以看到a< 5 其实返回的也是一个数组,这个数组的元素shape和原数组是一样的,只不过里面的值是true和false,表示是否应该被选择出来。

同样的,我们可以挑出所有大于5的元素:

>>> five_up = (a >= 5)
>>> print(a[five_up])
[ 5  6  7  8  9 10 11 12]

选出所有可以被2整除的数:

>>> divisible_by_2 = a[a%2==0]
>>> print(divisible_by_2)
[ 2  4  6  8 10 12]

还可以使用 & 和 | 运算符:

>>> c = a[(a > 2) & (a < 11)]
>>> print(c)
[ 3  4  5  6  7  8  9 10]

还可以使用nonzero来打印出满足条件的index信息:

In [23]: a = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])

In [24]: b = np.nonzero(a < 5)

In [25]: b
Out[25]: (array([0, 0, 0, 0]), array([0, 1, 2, 3]))
  
>>> print(a[b])
[1 2 3 4]

上面返回的元组中,第一个值表示的是行号,第二个值表示的是列。

从现有数据中创建Array

我们可以使用 slicing , indexing,np.vstack(),np.hstack(),np.hsplit(),.view(),copy() 来从现有数据中创建Array。

前面的例子中,我们看到可以使用List和切片来创建新的数组:

>>> a = np.array([1,  2,  3,  4,  5,  6,  7,  8,  9, 10])
>>> arr1 = a[3:8]
>>> arr1
array([4, 5, 6, 7, 8])

两个现有的数组可以进行垂直或者水平堆叠:

>>> a1 = np.array([[1, 1],
...                [2, 2]])

>>> a2 = np.array([[3, 3],
...                [4, 4]])

>>> np.vstack((a1, a2))
array([[1, 1],
       [2, 2],
       [3, 3],
       [4, 4]])

>>> np.hstack((a1, a2))
array([[1, 1, 3, 3],
       [2, 2, 4, 4]])

使用hsplit 可以将大的数组分割成为几个小的数组:

>>> x = np.arange(1, 25).reshape(2, 12)
>>> x
array([[ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12],
       [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]])

>>> np.hsplit(x, 3)
[array([[1,  2,  3,  4],
        [13, 14, 15, 16]]), array([[ 5,  6,  7,  8],
        [17, 18, 19, 20]]), array([[ 9, 10, 11, 12],
        [21, 22, 23, 24]])]

算数运算

array的加法:

>>> data = np.array([1, 2])
>>> ones = np.ones(2, dtype=int)
>>> data + ones
array([2, 3])

其他的运算:

>>> data - ones
array([0, 1])
>>> data * data
array([1, 4])
>>> data / data
array([1., 1.])

array求和:

>>> a = np.array([1, 2, 3, 4])

>>> a.sum()
10

如果是求和多维数组的话,需要指定维度:

>>> b = np.array([[1, 1], [2, 2]])
>>> b.sum(axis=0)
array([3, 3])

>>> b.sum(axis=1)
array([2, 4])

其他有用操作

这里列出了其他的有用操作:

>>> data.max()
2.0
>>> data.min()
1.0
>>> data.sum()
3.0

对于二维数组来说,sum默认会求和所有的元素,min也会从所有元素中查找最小的:

>>> a = np.array([[0.45053314, 0.17296777, 0.34376245, 0.5510652],
...               [0.54627315, 0.05093587, 0.40067661, 0.55645993],
...               [0.12697628, 0.82485143, 0.26590556, 0.56917101]])

>>> a.sum()
4.8595784

>>> a.min()
0.05093587

我们还可以指定维度:

>>> a.min(axis=0)
array([0.12697628, 0.05093587, 0.26590556, 0.5510652 ])

矩阵

矩阵就是 2 * 2 的数组:

>>> data = np.array([[1, 2], [3, 4]])
>>> data
array([[1, 2],
       [3, 4]])

矩阵同样可以进行统计操作:

>>> data.max()
4
>>> data.min()
1
>>> data.sum()
10

默认情况是累加所有的元素,我们也可以指定特定的累加维度:

>>> data.max(axis=0)
array([3, 4])
>>> data.max(axis=1)
array([2, 4])

矩阵的运算:

>>> data = np.array([[1, 2], [3, 4]])
>>> ones = np.array([[1, 1], [1, 1]])
>>> data + ones
array([[2, 3],
       [4, 5]])

如果是多维的和低维的进行运算,那么将会使用内置的broadcast机制,将低维的进行广播:

>>> data = np.array([[1, 2], [3, 4], [5, 6]])
>>> ones_row = np.array([[1, 1]])
>>> data + ones_row
array([[2, 3],
       [4, 5],
       [6, 7]])

生成随机数

在机器学习中,生成随机数是一个非常重要的功能。我们看下如何在Numpy中生成随机数。

>>> rng = np.random.default_rng(0)
>>> rng.random(3)
array([0.63696169, 0.26978671, 0.04097352])

>>> rng.random((3, 2))
array([[0.01652764, 0.81327024],
       [0.91275558, 0.60663578],
       [0.72949656, 0.54362499]])  # may vary
       
>>> rng.integers(5, size=(2, 4))
array([[2, 1, 1, 0],
       [0, 0, 0, 4]])  # may vary

unique

np.unique可以统计数组的唯一值:

>>> a = np.array([11, 11, 12, 13, 14, 15, 16, 17, 12, 13, 11, 14, 18, 19, 20])

>>> unique_values = np.unique(a)
>>> print(unique_values)
[11 12 13 14 15 16 17 18 19 20]

还可以返回index或者count:

>>> unique_values, indices_list = np.unique(a, return_index=True)
>>> print(indices_list)
[ 0  2  3  4  5  6  7 12 13 14]
>>> unique_values, occurrence_count = np.unique(a, return_counts=True)
>>> print(occurrence_count)
[3 2 2 2 1 1 1 1 1 1]

对矩阵也适用:

>>> a_2d = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [1, 2, 3, 4]])

>>> unique_values = np.unique(a_2d)
>>> print(unique_values)
[ 1  2  3  4  5  6  7  8  9 10 11 12]

如果想得到唯一的行或者列,可以传入axis参数:

>>> unique_rows = np.unique(a_2d, axis=0)
>>> print(unique_rows)
[[ 1  2  3  4]
 [ 5  6  7  8]
 [ 9 10 11 12]]

矩阵变换

我们可以使用transpose来把矩阵的行和列进行调换:

>>> arr = np.arange(6).reshape((2, 3))
>>> arr
array([[0, 1, 2],
       [3, 4, 5]])

>>> arr.transpose()
array([[0, 3],
       [1, 4],
       [2, 5]])

反转数组

使用flip可以反转数组:

>>> arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])
>>> reversed_arr = np.flip(arr)
>>> print('Reversed Array: ', reversed_arr)
Reversed Array:  [8 7 6 5 4 3 2 1]

如果是2维的数组:

>>> arr_2d = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])

>>> reversed_arr = np.flip(arr_2d)
>>> print(reversed_arr)
[[12 11 10  9]
 [ 8  7  6  5]
 [ 4  3  2  1]]

默认会反转行和列,我们也可以只反转行或者列:

>>> reversed_arr_rows = np.flip(arr_2d, axis=0)
>>> print(reversed_arr_rows)
[[ 9 10 11 12]
 [ 5  6  7  8]
 [ 1  2  3  4]]

>>> reversed_arr_columns = np.flip(arr_2d, axis=1)
>>> print(reversed_arr_columns)
[[ 4  3  2  1]
 [ 8  7  6  5]
 [12 11 10  9]]

还可以只反转一行或者一列:


>>> arr_2d[1] = np.flip(arr_2d[1])
>>> print(arr_2d)
[[ 1  2  3  4]
 [ 8  7  6  5]
 [ 9 10 11 12]]

>>> arr_2d[:,1] = np.flip(arr_2d[:,1])
>>> print(arr_2d)
[[ 1 10  3  4]
 [ 8  7  6  5]
 [ 9  2 11 12]]

flatten 和 ravel

flatten 可以将数组变成一维的:

>>> x = np.array([[1 , 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])

>>> x.flatten()
array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12])

flatten之后的数组和原数组是无关的,我们修改flatten之后的数组不会改变之前的数组内容:

>>> a1 = x.flatten()
>>> a1[0] = 99
>>> print(x)  # Original array
[[ 1  2  3  4]
 [ 5  6  7  8]
 [ 9 10 11 12]]
>>> print(a1)  # New array
[99  2  3  4  5  6  7  8  9 10 11 12]

但是如果使用ravel,对新数组的修改同样也会改变原始数组:

>>> a2 = x.ravel()
>>> a2[0] = 98
>>> print(x)  # Original array
[[98  2  3  4]
 [ 5  6  7  8]
 [ 9 10 11 12]]
>>> print(a2)  # New array
[98  2  3  4  5  6  7  8  9 10 11 12]

save 和 load

NumPy 的对象可以通过save和load存放到文件和从文件中加载:

>>> a = np.array([1, 2, 3, 4, 5, 6])

>>> np.save('filename', a)

>>> b = np.load('filename.npy')

如果想以文本的方式来存储,那么可以使用np.savetxt:

>>> csv_arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])

>>> np.savetxt('new_file.csv', csv_arr)

>>> np.loadtxt('new_file.csv')
array([1., 2., 3., 4., 5., 6., 7., 8.])

CSV

NumPy有专门的方法来对CSV文件进行操作:

>>> import pandas as pd

>>> # If all of your columns are the same type:
>>> x = pd.read_csv('music.csv', header=0).values
>>> print(x)
[['Billie Holiday' 'Jazz' 1300000 27000000]
 ['Jimmie Hendrix' 'Rock' 2700000 70000000]
 ['Miles Davis' 'Jazz' 1500000 48000000]
 ['SIA' 'Pop' 2000000 74000000]]

>>> # You can also simply select the columns you need:
>>> x = pd.read_csv('music.csv', usecols=['Artist', 'Plays']).values
>>> print(x)
[['Billie Holiday' 27000000]
 ['Jimmie Hendrix' 70000000]
 ['Miles Davis' 48000000]
 ['SIA' 74000000]]

最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!

上一页02-numpy下一页02-python-numpy-datatype

最后更新于1年前

这有帮助吗?

本文已收录于

www.flydean.com