07-algorithm-radix-sort

7. 排序-基数排序

简介

之前的文章我们讲了count排序,但是count排序有个限制,因为count数组是有限的,如果数组中的元素范围过大,使用count排序是不现实的,其时间复杂度会膨胀。

而解决大范围的元素排序的办法就是基数排序。

基数排序的例子

什么是基数排序呢?

考虑一下,虽然我们不能直接将所有范围内的数字都使用count数组进行排序,但是我们可以考虑按数字的位数来进行n轮count排序,每一轮都只对数字的某一位进行排序。

最终仍然可以得到结果,并且还可以摆脱count数组大小的限制,这就是基数排序。

假如我们现在数组的元素是:1221, 15, 20, 3681, 277, 5420, 71, 1522, 4793。

先看动画,看下最直观的基数排序的过程:

在上面的例子中,我们先对个位进行count排序,然后对十位进行count排序,然后是百位和千位。

最后生成最终的排序结果。

基数排序的java代码实现

因为基数排序实际上是分别按位数的count排序。所以我们可以重用之前写的count排序的代码,只是需要进行一些改造。

doCountingSort方法除了传入数组外,还需要传入排序的位数digit,我们用1,10,100,1000来表示。

看一下改造过后的doCountingSort方法:

跟count排序变化不大,区别就是这里我们需要使用count[(array[i]/digit)%10],来对每一位进行排序。

另外,为了计算出位数digit的值,我们还需要拿到数组中最大元素的值:

看下怎么调用:

看下输出结果:

很好,结果都排序了。

基数排序的时间复杂度

从计算过程我们可以看出,基数排序的时间复杂度是O(d*(n+b)) ,其中b是数字的进制数,比如上面我们使用的是10进制,那么b=10。

d是需要循环的轮数,也就是数组中最大数的位数。假如数组中最大的数字用K表示,那么d=logb(k)。

综上,基数排序的时间复杂度是O((n+b) * logb(k))。

当k <= nc,其中c是常量时,上面的时间复杂度可以近似等于O(nLogb(n))。

考虑下当b=n的情况下,基数排序的时间复杂度可以近似等于线性时间复杂度O(n)。

本文的代码地址:

learn-algorithm

本文已收录于 www.flydean.com

最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!

最后更新于

这有帮助吗?