11-algorithm-AVL-tree
11. 平衡二叉搜索树AVL Tree
简介
平衡二叉搜索树是一种特殊的二叉搜索树。为什么会有平衡二叉搜索树呢?
考虑一下二叉搜索树的特殊情况,如果一个二叉搜索树所有的节点都是右节点,那么这个二叉搜索树将会退化成为链表。从而导致搜索的时间复杂度变为O(n),其中n是二叉搜索树的节点个数。
而平衡二叉搜索树正是为了解决这个问题而产生的,它通过限制树的高度,从而将时间复杂度降低为O(logn)。
AVL的特性
在讨论AVL的特性之前,我们先介绍一个概念叫做平衡因子,平衡因子表示的是左子树和右子树的高度差。
如果平衡因子=0,表示这是一个完全平衡二叉树。
如果平衡因子=1,那么这棵树就是平衡二叉树AVL。
也就是是说AVL的平衡因子不能够大于1。
先看一个AVL的例子:

总结一下,AVL首先是一个二叉搜索树,然后又是一个二叉平衡树。
AVL的构建
有了AVL的特性之后,我们看下AVL是怎么构建的。
同样的,AVL也是由各个节点构成的,每个节点拥有data,left和right几个属性。
因为是二叉平衡树,节点是否平衡还跟节点的高度有关,所以我们还需要定义一个height作为节点的高度。
在来两个辅助的方法,一个是获取给定的节点高度:
和获取平衡因子:
AVL的搜索
AVL的搜索和二叉搜索树的搜索方式是一致的。
先看一个直观的例子,怎么在AVL中搜索到7这个节点:

搜索的基本步骤是:
从根节点15出发,比较根节点和搜索值的大小
如果搜索值小于节点值,那么递归搜索左侧树
如果搜索值大于节点值,那么递归搜索右侧树
如果节点匹配,则直接返回即可。
相应的java代码如下:
AVL的插入
AVL的插入和BST的插入是一样的,不过插入之后有可能会导致树不再平衡,所以我们需要做一个再平衡的步骤。
看一个直观的动画:

插入的逻辑是这样的:
从根节点出发,比较节点数据和要插入的数据
如果要插入的数据小于节点数据,则递归左子树插入
如果要插入的数据大于节点数据,则递归右子树插入
如果根节点为空,则插入当前数据作为根节点
插入数据之后,我们需要做再平衡。
再平衡的逻辑是这样的:
从插入的节点向上找出第一个未平衡的节点,这个节点我们记为z
对z为根节点的子树进行旋转,得到一个平衡树。
根据以z为根节点的树的不同,我们有四种旋转方式:
left-left:

如果是left left的树,那么进行一次右旋就够了。
右旋的步骤是怎么样的呢?
找到z节点的左节点y
将y作为旋转后的根节点
z作为y的右节点
y的右节点作为z的左节点
更新z的高度
相应的代码如下:
right-right:
如果是right-right形式的树,需要经过一次左旋:

左旋的步骤正好和右旋的步骤相反:
找到z节点的右节点y
将y作为旋转后的根节点
z作为y的左节点
y的左节点作为z的右节点
更新z的高度
相应的代码如下:
left-right:

如果是left right的情况,需要先进行一次左旋将树转变成left left格式,然后再进行一次右旋,得到最终结果。
right-left:

如果是right left格式,需要先进行一次右旋,转换成为right right格式,然后再进行一次左旋即可。
现在问题来了,怎么判断一个树到底是哪种格式呢?我们可以通过获取平衡因子和新插入的数据比较来判断:
如果balance>1,那么我们在Left Left或者left Right的情况,这时候我们需要比较新插入的data和node.left.data的大小
如果data < node.left.data,表示是left left的情况,只需要一次右旋即可
如果data > node.left.data,表示是left right的情况,则需要将node.left进行一次左旋,然后将node进行一次右旋
如果balance<-1,那么我们在Right Right或者Right Left的情况,这时候我们需要比较新插入的data和node.right.data的大小 如果data > node.right.data,表示是Right Right的情况,只需要一次左旋即可
如果data < node.left.data,表示是Right left的情况,则需要将node.right进行一次右旋,然后将node进行一次左旋
插入节点的最终代码如下:
AVL的删除
AVL的删除和插入类似。
首先按照普通的BST删除,然后也需要做再平衡。
看一个直观的动画:

删除之后,节点再平衡也有4种情况:
如果balance>1,那么我们在Left Left或者left Right的情况,这时候我们需要比较左节点的平衡因子
如果左节点的平衡因子>=0,表示是left left的情况,只需要一次右旋即可
如果左节点的平衡因<0,表示是left right的情况,则需要将node.left进行一次左旋,然后将node进行一次右旋
如果balance<-1,那么我们在Right Right或者Right Left的情况,这时候我们需要比较右节点的平衡因子
如果右节点的平衡因子<=0,表示是Right Right的情况,只需要一次左旋即可
如果右节点的平衡因子>0,表示是Right left的情况,则需要将node.right进行一次右旋,然后将node进行一次左旋
相应的代码如下:
本文的代码地址:
本文收录于 www.flydean.com
最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!
欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!

最后更新于
这有帮助吗?