二叉树

给定一个二叉树 root ,返回其最大深度。

二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。

递归

class Solution {
    public int maxDepth(TreeNode root) {
        if(root==null){
            return 0;
        }
        return Math.max(maxDepth(root.left),maxDepth(root.right))+1;

    }
}

给你两棵二叉树的根节点 pq ,编写一个函数来检验这两棵树是否相同。

如果两个树在结构上相同,并且节点具有相同的值,则认为它们是相同的。

递归

给你一棵二叉树的根节点 root ,翻转这棵二叉树,并返回其根节点。

递归

给你一个二叉树的根节点 root , 检查它是否轴对称。

递归

给定两个整数数组 preorderinorder ,其中 preorder 是二叉树的先序遍历inorder 是同一棵树的中序遍历,请构造二叉树并返回其根节点。

解法:递归,在中序遍历中定位到根节点,那么我们就可以分别知道左子树和右子树中的节点数目。由于同一颗子树的前序遍历和中序遍历的长度显然是相同的,因此我们就可以对应到前序遍历的结果中,对上述形式中的所有左右括号进行定位。

同时使用hashMap来存储中序遍历的节点和位置。用来方便计算左右子树的长度。

给定两个整数数组 inorderpostorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树

解法,同样使用map来存储inorder的值和index。

因为postorder最后的元素就是根节点,所以可以直接length--得到。

给定一个二叉树:

填充它的每个 next 指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next 指针设置为 NULL

初始状态下,所有 next 指针都被设置为 NULL

解法:层次遍历

给你二叉树的根结点 root ,请你将它展开为一个单链表:

  • 展开后的单链表应该同样使用 TreeNode ,其中 right 子指针指向链表中下一个结点,而左子指针始终为 null

  • 展开后的单链表应该与二叉树 先序遍历 顺序相同。

解法一,前序遍历

迭代法

解法2:

  1. 将左子树插入到右子树的地方

  2. 将原来的右子树接到左子树的最右边节点

  3. 考虑新的右子树的根节点,一直重复上边的过程,直到新的右子树为 null

给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum 。如果存在,返回 true ;否则,返回 false

叶子节点 是指没有子节点的节点

递归,如果是叶子结点,则判断值是否一致,否则左右继续递归。

给你一个二叉树的根节点 root ,树中每个节点都存放有一个 09 之间的数字。

每条从根节点到叶节点的路径都代表一个数字:

  • 例如,从根节点到叶节点的路径 1 -> 2 -> 3 表示数字 123

计算从根节点到叶节点生成的 所有数字之和

叶节点 是指没有子节点的节点。

解法:从上到下递归,如果是叶子结点,则返回sum值。

二叉树中的 路径 被定义为一条节点序列,序列中每对相邻节点之间都存在一条边。同一个节点在一条路径序列中 至多出现一次 。该路径 至少包含一个 节点,且不一定经过根节点。

路径和 是路径中各节点值的总和。

给你一个二叉树的根节点 root ,返回其 最大路径和

解法,首先定义一个函数,返回的是一个节点的最大贡献值,具体而言,就是在以该节点为根节点的子树中寻找以该节点为起点的一条路径,使得该路径上的节点值之和最大。

然后就可以使用递归了。然后在递归中计算最大的值。

实现一个二叉搜索树迭代器类BSTIterator ,表示一个按中序遍历二叉搜索树(BST)的迭代器:

  • BSTIterator(TreeNode root) 初始化 BSTIterator 类的一个对象。BST 的根节点 root 会作为构造函数的一部分给出。指针应初始化为一个不存在于 BST 中的数字,且该数字小于 BST 中的任何元素。

  • boolean hasNext() 如果向指针右侧遍历存在数字,则返回 true ;否则返回 false

  • int next()将指针向右移动,然后返回指针处的数字。

注意,指针初始化为一个不存在于 BST 中的数字,所以对 next() 的首次调用将返回 BST 中的最小元素。

你可以假设 next() 调用总是有效的,也就是说,当调用 next() 时,BST 的中序遍历中至少存在一个下一个数字。

解法1:

我们可以直接对二叉搜索树做一次完全的递归遍历,获取中序遍历的全部结果并保存在数组中。随后,我们利用得到的数组本身来实现迭代器。

解法2:

除了递归的方法外,我们还可以利用栈这一数据结构,通过迭代的方式对二叉树做中序遍历。此时,我们无需预先计算出中序遍历的全部结果,只需要实时维护当前栈的情况即可

给你一棵 完全二叉树 的根节点 root ,求出该树的节点个数。

完全二叉树 的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2h 个节点。

解法一,最简单方法递归。但是没有利用到完全二叉树的特定。

解法二,通过对于最大层数为 h 的完全二叉树,节点个数一定在 2^h,2^{h+1}-1 的范围内,可以在该范围内通过二分查找的方式得到完全二叉树的节点个数。

先找出level,然后通过二分查找法查看对应的节点是否存在。

如果第 k 个节点位于第 h 层,则 k 的二进制表示包含 h+1 位,其中最高位是 1,其余各位从高到低表示从根节点到第 k 个节点的路径,0 表示移动到左子节点,1 表示移动到右子节点。通过位运算得到第 k 个节点对应的路径,判断该路径对应的节点是否存在,即可判断第 k 个节点是否存在。

给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。

递归

解法1:dfs是当前root有没有p或者q的子节点。在dfs的过程中找到对应的公共祖先。

解法二,先判断当前节点是否是p或者q节点,是的话那么root就是公共节点。否则的话,拿到左右两边的公共节点。

lowestCommonAncestor的作用是找到最近公共节点。

给定一个二叉树的 根节点 root,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。

层次遍历:

给定一个非空二叉树的根节点 root , 以数组的形式返回每一层节点的平均值。与实际答案相差 10-5 以内的答案可以被接受。

同样层次遍历

给你二叉树的根节点 root ,返回其节点值的 锯齿形层序遍历 。(即先从左往右,再从右往左进行下一层遍历,以此类推,层与层之间交替进行)。

一个二叉搜索树的根节点 root ,返回 树中任意两不同节点值之间的最小差值

差值是一个正数,其数值等于两值之差的绝对值。

按中序遍历,获取中序遍历的上一个值。然后在遍历过程中找到最小值

给定一个二叉搜索树的根节点 root ,和一个整数 k ,请你设计一个算法查找其中第 k 个最小元素(从 1 开始计数)。

同样中序遍历,迭代第k次的时候就是要找的值

给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。

有效 二叉搜索树定义如下:

  • 节点的左子树只包含 小于 当前节点的数。

  • 节点的右子树只包含 大于 当前节点的数。

  • 所有左子树和右子树自身必须也是二叉搜索树。

递归,构造好递归函数

最后更新于

这有帮助吗?