01-pandas-titanic

1. 数据分析实际案例之:pandas在泰坦尼特号乘客数据中的使用

简介

1912年4月15日,号称永不沉没的泰坦尼克号因为和冰山相撞沉没了。因为没有足够的救援设备,2224个乘客中有1502个乘客不幸遇难。事故已经发生了,但是我们可以从泰坦尼克号中的历史数据中发现一些数据规律吗?今天本文将会带领大家灵活的使用pandas来进行数据分析。

泰坦尼特号乘客数据

我们从kaggle官网中下载了部分泰坦尼特号的乘客数据,主要包含下面几个字段:

变量名
含义
取值

survival

是否生还

0 = No, 1 = Yes

pclass

船票的级别

1 = 1st, 2 = 2nd, 3 = 3rd

sex

性别

Age

年龄

sibsp

配偶信息

parch

父母或者子女信息

ticket

船票编码

fare

船费

cabin

客舱编号

embarked

登录的港口

C = Cherbourg, Q = Queenstown, S = Southampton

下载下来的文件是一个csv文件。接下来我们来看一下怎么使用pandas来对其进行数据分析。

使用pandas对数据进行分析

引入依赖包

本文主要使用pandas和matplotlib,所以需要首先进行下面的通用设置:

from numpy.random import randn
import numpy as np
np.random.seed(123)
import os
import matplotlib.pyplot as plt
import pandas as pd
plt.rc('figure', figsize=(10, 6))
np.set_printoptions(precision=4)
pd.options.display.max_rows = 20

读取和分析数据

pandas提供了一个read_csv方法可以很方便的读取一个csv数据,并将其转换为DataFrame:

path = '../data/titanic.csv'
df = pd.read_csv(path)
df

我们看下读入的数据:

PassengerId
Pclass
Name
Sex
Age
SibSp
Parch
Ticket
Fare
Cabin
Embarked

0

892

3

Kelly, Mr. James

male

34.5

0

0

330911

7.8292

NaN

Q

1

893

3

Wilkes, Mrs. James (Ellen Needs)

female

47.0

1

0

363272

7.0000

NaN

S

2

894

2

Myles, Mr. Thomas Francis

male

62.0

0

0

240276

9.6875

NaN

Q

3

895

3

Wirz, Mr. Albert

male

27.0

0

0

315154

8.6625

NaN

S

4

896

3

Hirvonen, Mrs. Alexander (Helga E Lindqvist)

female

22.0

1

1

3101298

12.2875

NaN

S

5

897

3

Svensson, Mr. Johan Cervin

male

14.0

0

0

7538

9.2250

NaN

S

6

898

3

Connolly, Miss. Kate

female

30.0

0

0

330972

7.6292

NaN

Q

7

899

2

Caldwell, Mr. Albert Francis

male

26.0

1

1

248738

29.0000

NaN

S

8

900

3

Abrahim, Mrs. Joseph (Sophie Halaut Easu)

female

18.0

0

0

2657

7.2292

NaN

C

9

901

3

Davies, Mr. John Samuel

male

21.0

2

0

A/4 48871

24.1500

NaN

S

...

...

...

...

...

...

...

...

...

...

...

...

408

1300

3

Riordan, Miss. Johanna Hannah""

female

NaN

0

0

334915

7.7208

NaN

Q

409

1301

3

Peacock, Miss. Treasteall

female

3.0

1

1

SOTON/O.Q. 3101315

13.7750

NaN

S

410

1302

3

Naughton, Miss. Hannah

female

NaN

0

0

365237

7.7500

NaN

Q

411

1303

1

Minahan, Mrs. William Edward (Lillian E Thorpe)

female

37.0

1

0

19928

90.0000

C78

Q

412

1304

3

Henriksson, Miss. Jenny Lovisa

female

28.0

0

0

347086

7.7750

NaN

S

413

1305

3

Spector, Mr. Woolf

male

NaN

0

0

A.5. 3236

8.0500

NaN

S

414

1306

1

Oliva y Ocana, Dona. Fermina

female

39.0

0

0

PC 17758

108.9000

C105

C

415

1307

3

Saether, Mr. Simon Sivertsen

male

38.5

0

0

SOTON/O.Q. 3101262

7.2500

NaN

S

416

1308

3

Ware, Mr. Frederick

male

NaN

0

0

359309

8.0500

NaN

S

417

1309

3

Peter, Master. Michael J

male

NaN

1

1

2668

22.3583

NaN

C

418 rows × 11 columns

调用df的describe方法可以查看基本的统计信息:

PassengerId
Pclass
Age
SibSp
Parch
Fare

count

418.000000

418.000000

332.000000

418.000000

418.000000

417.000000

mean

1100.500000

2.265550

30.272590

0.447368

0.392344

35.627188

std

120.810458

0.841838

14.181209

0.896760

0.981429

55.907576

min

892.000000

1.000000

0.170000

0.000000

0.000000

0.000000

25%

996.250000

1.000000

21.000000

0.000000

0.000000

7.895800

50%

1100.500000

3.000000

27.000000

0.000000

0.000000

14.454200

75%

1204.750000

3.000000

39.000000

1.000000

0.000000

31.500000

max

1309.000000

3.000000

76.000000

8.000000

9.000000

512.329200

如果要想查看乘客登录的港口,可以这样选择:

df['Embarked'][:10]
0    Q
1    S
2    Q
3    S
4    S
5    S
6    Q
7    S
8    C
9    S
Name: Embarked, dtype: object

使用value_counts 可以对其进行统计:

embark_counts=df['Embarked'].value_counts()
embark_counts[:10]
S    270
C    102
Q     46
Name: Embarked, dtype: int64

从结果可以看出,从S港口登录的乘客有270个,从C港口登录的乘客有102个,从Q港口登录的乘客有46个。

同样的,我们可以统计一下age信息:

age_counts=df['Age'].value_counts()
age_counts.head(10)

前10位的年龄如下:

24.0    17
21.0    17
22.0    16
30.0    15
18.0    13
27.0    12
26.0    12
25.0    11
23.0    11
29.0    10
Name: Age, dtype: int64

计算一下年龄的平均数:

df['Age'].mean()
30.272590361445783

实际上有些数据是没有年龄的,我们可以使用平均数对其填充:

clean_age1 = df['Age'].fillna(df['Age'].mean())
clean_age1.value_counts()

可以看出平均数是30.27,个数是86。

30.27259    86
24.00000    17
21.00000    17
22.00000    16
30.00000    15
18.00000    13
26.00000    12
27.00000    12
25.00000    11
23.00000    11
            ..
36.50000     1
40.50000     1
11.50000     1
34.00000     1
15.00000     1
7.00000      1
60.50000     1
26.50000     1
76.00000     1
34.50000     1
Name: Age, Length: 80, dtype: int64

使用平均数来作为年龄可能不是一个好主意,还有一种办法就是丢弃平均数:

clean_age2=df['Age'].dropna()
clean_age2
age_counts = clean_age2.value_counts()
ageset=age_counts.head(10)
ageset
24.0    17
21.0    17
22.0    16
30.0    15
18.0    13
27.0    12
26.0    12
25.0    11
23.0    11
29.0    10
Name: Age, dtype: int64

图形化表示和矩阵转换

图形化对于数据分析非常有帮助,我们对于上面得出的前10名的age使用柱状图来表示:

import seaborn as sns
sns.barplot(x=ageset.index, y=ageset.values)

接下来我们来做一个复杂的矩阵变换,我们先来过滤掉age和sex都为空的数据:

cframe=df[df.Age.notnull() & df.Sex.notnull()]
cframe
PassengerId
Pclass
Name
Sex
Age
SibSp
Parch
Ticket
Fare
Cabin
Embarked

0

892

3

Kelly, Mr. James

male

34.5

0

0

330911

7.8292

NaN

Q

1

893

3

Wilkes, Mrs. James (Ellen Needs)

female

47.0

1

0

363272

7.0000

NaN

S

2

894

2

Myles, Mr. Thomas Francis

male

62.0

0

0

240276

9.6875

NaN

Q

3

895

3

Wirz, Mr. Albert

male

27.0

0

0

315154

8.6625

NaN

S

4

896

3

Hirvonen, Mrs. Alexander (Helga E Lindqvist)

female

22.0

1

1

3101298

12.2875

NaN

S

5

897

3

Svensson, Mr. Johan Cervin

male

14.0

0

0

7538

9.2250

NaN

S

6

898

3

Connolly, Miss. Kate

female

30.0

0

0

330972

7.6292

NaN

Q

7

899

2

Caldwell, Mr. Albert Francis

male

26.0

1

1

248738

29.0000

NaN

S

8

900

3

Abrahim, Mrs. Joseph (Sophie Halaut Easu)

female

18.0

0

0

2657

7.2292

NaN

C

9

901

3

Davies, Mr. John Samuel

male

21.0

2

0

A/4 48871

24.1500

NaN

S

...

...

...

...

...

...

...

...

...

...

...

...

403

1295

1

Carrau, Mr. Jose Pedro

male

17.0

0

0

113059

47.1000

NaN

S

404

1296

1

Frauenthal, Mr. Isaac Gerald

male

43.0

1

0

17765

27.7208

D40

C

405

1297

2

Nourney, Mr. Alfred (Baron von Drachstedt")"

male

20.0

0

0

SC/PARIS 2166

13.8625

D38

C

406

1298

2

Ware, Mr. William Jeffery

male

23.0

1

0

28666

10.5000

NaN

S

407

1299

1

Widener, Mr. George Dunton

male

50.0

1

1

113503

211.5000

C80

C

409

1301

3

Peacock, Miss. Treasteall

female

3.0

1

1

SOTON/O.Q. 3101315

13.7750

NaN

S

411

1303

1

Minahan, Mrs. William Edward (Lillian E Thorpe)

female

37.0

1

0

19928

90.0000

C78

Q

412

1304

3

Henriksson, Miss. Jenny Lovisa

female

28.0

0

0

347086

7.7750

NaN

S

414

1306

1

Oliva y Ocana, Dona. Fermina

female

39.0

0

0

PC 17758

108.9000

C105

C

415

1307

3

Saether, Mr. Simon Sivertsen

male

38.5

0

0

SOTON/O.Q. 3101262

7.2500

NaN

S

332 rows × 11 columns

接下来使用groupby对age和sex进行分组:

by_sex_age = cframe.groupby(['Age', 'Sex'])
by_sex_age.size()
Age    Sex   
0.17   female    1
0.33   male      1
0.75   male      1
0.83   male      1
0.92   female    1
1.00   female    3
2.00   female    1
       male      1
3.00   female    1
5.00   male      1
                ..
60.00  female    3
60.50  male      1
61.00  male      2
62.00  male      1
63.00  female    1
       male      1
64.00  female    2
       male      1
67.00  male      1
76.00  female    1
Length: 115, dtype: int64

使用unstack将Sex的列数据变成行:

Sex
female
male

Age

0.17

1.0

0.0

0.33

0.0

1.0

0.75

0.0

1.0

0.83

0.0

1.0

0.92

1.0

0.0

1.00

3.0

0.0

2.00

1.0

1.0

3.00

1.0

0.0

5.00

0.0

1.0

6.00

0.0

3.0

...

...

...

58.00

1.0

0.0

59.00

1.0

0.0

60.00

3.0

0.0

60.50

0.0

1.0

61.00

0.0

2.0

62.00

0.0

1.0

63.00

1.0

1.0

64.00

2.0

1.0

67.00

0.0

1.0

76.00

1.0

0.0

79 rows × 2 columns

我们把同样age的人数加起来,然后使用argsort进行排序,得到排序过后的index:

indexer = agg_counts.sum(1).argsort()
indexer.tail(10)
Age
58.0    37
59.0    31
60.0    29
60.5    32
61.0    34
62.0    22
63.0    38
64.0    27
67.0    26
76.0    30
dtype: int64

从agg_counts中取出最后的10个,也就是最大的10个:

count_subset = agg_counts.take(indexer.tail(10))
count_subset=count_subset.tail(10)
count_subset
Sex
female
male

Age

29.0

5.0

5.0

25.0

1.0

10.0

23.0

5.0

6.0

26.0

4.0

8.0

27.0

4.0

8.0

18.0

7.0

6.0

30.0

6.0

9.0

22.0

10.0

6.0

21.0

3.0

14.0

24.0

5.0

12.0

上面的操作可以简化为下面的代码:

agg_counts.sum(1).nlargest(10)
Age
21.0    17.0
24.0    17.0
22.0    16.0
30.0    15.0
18.0    13.0
26.0    12.0
27.0    12.0
23.0    11.0
25.0    11.0
29.0    10.0
dtype: float64

将count_subset 进行stack操作,方便后面的画图:

stack_subset = count_subset.stack()
stack_subset
Age   Sex   
29.0  female     5.0
      male       5.0
25.0  female     1.0
      male      10.0
23.0  female     5.0
      male       6.0
26.0  female     4.0
      male       8.0
27.0  female     4.0
      male       8.0
18.0  female     7.0
      male       6.0
30.0  female     6.0
      male       9.0
22.0  female    10.0
      male       6.0
21.0  female     3.0
      male      14.0
24.0  female     5.0
      male      12.0
dtype: float64
stack_subset.name = 'total'
stack_subset = stack_subset.reset_index()
stack_subset
Age
Sex
total

0

29.0

female

5.0

1

29.0

male

5.0

2

25.0

female

1.0

3

25.0

male

10.0

4

23.0

female

5.0

5

23.0

male

6.0

6

26.0

female

4.0

7

26.0

male

8.0

8

27.0

female

4.0

9

27.0

male

8.0

10

18.0

female

7.0

11

18.0

male

6.0

12

30.0

female

6.0

13

30.0

male

9.0

14

22.0

female

10.0

15

22.0

male

6.0

16

21.0

female

3.0

17

21.0

male

14.0

18

24.0

female

5.0

19

24.0

male

12.0

作图如下:

sns.barplot(x='total', y='Age', hue='Sex',  data=stack_subset)

本文例子可以参考: https://github.com/ddean2009/learn-ai/

最后更新于